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SUMMARY

In 2004, the NASA Astronaut Office produced a memo regarding the safety

of next generation launch vehicles. The memo requested that these vehicles have a

probability of loss of crew of at most 1 in 1000 flights, which represents nearly an order

of magnitude decrease from current vehicles. The goal of LOC of 1 in 1000 flights has

since been adopted by the launch vehicle design community as a requirement for the

safety of future vehicles. This research addresses the gap between current vehicles

and future goals by improving the capture of vehicle architecture effects on reliability

and safety.

Vehicle architecture pertains to the physical description of the vehicle itself, which

includes manned or unmanned, number of stages, number of engines per stage, engine

cycle types, redundancy, etc. During the operations phase of the vehicle life-cycle it

is clear that each of these parameters will have an inherent effect on the reliability

and safety of the vehicle. However, the vehicle architecture is typically determined

during the early conceptual design phase when a baseline vehicle is selected. Unless

a great amount of money and effort is spent, the architecture will remain relatively

constant from conceptual design through operations. Due to the fact that the vehicle

architecture is essentially “locked-in” during early design, it is expected that much of

the vehicle’s reliability potential will also be locked-in.

This observation leads to the conclusion that improvement of vehicle reliability

and safety in the area of vehicle architecture must be completed during early design.

Evaluation of the effects of different architecture decisions must be performed prior

to baseline selection, which helps to identify a vehicle that is most likely to meet the

reliability and safety requirements when it reaches operations. Although methods
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exist for evaluating reliability and safety during early design, weaknesses exist when

trying to evaluate all architecture effects simultaneously.

The goal of this research was therefore to formulate and implement a method that

is capable of quantitatively evaluating vehicle architecture effects on reliability and

safety during early conceptual design. The ConcepTual Reliability Growth Approach

for CompariSon of Launch Vehicle ArchiTectures (CONTRAST) was developed to

meet this goal. Using the strengths of existing techniques a hybrid approach was

developed, which utilizes a reliability growth projection to evaluate the vehicles. The

growth models are first applied at the subsystem level and then a vehicle level pro-

jection is generated using a simple system level fault tree. This approach allows for

the capture of all trades of interest at the subsystem level as well as many possible

trades at the assembly level.

The CONTRAST method is first tested on an example problem, which compares

the method output to actual data from the Space Transportation System (STS). This

example problem illustrates the ability of the CONTRAST method to capture relia-

bility growth trends seen during vehicle operations. It also serves as a validation for

the development of the reliability growth model assumptions for future applications

of the method.

The final chapter of the thesis applies the CONTRAST method to a relevant

launch vehicle, the Space Launch System (SLS), which is currently under develop-

ment. Within the application problem, the output of the method is first used to check

that the primary research objective has been met. Next, the output is compared to a

state-of-the-art tool in order to demonstrate the ability of the CONTRAST method

to alleviate one of the primary consequences of using existing techniques. The final

section within this chapter presents an analysis of the booster and upper stage block

upgrade options for the SLS vehicle. A study of the upgrade options was carried

out because the CONTRAST method is uniquely suited to look at the effects of such
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strategies. The results from the study of SLS block upgrades give interesting observa-

tions regarding the desired development order and upgrade strategy. Ultimately this

application problem demonstrates the merits of applying the CONTRAST method

during early design. This approach provides the designer with more information in

regard to the expected reliability of the vehicle, which will ultimately enable the

selection of a vehicle baseline that is most likely to meet the future requirements.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Launch vehicles are complex system of systems used to transport expensive, often

one-of-a-kind payloads to earth orbit and beyond. These vehicles rely on a multitude

of different subsystems spanning a wide variety of engineering disciplines, such as:

aerodynamics, propulsion, structures, controls, etc. Due to the extreme nature of the

environment in which these systems operate, they are inherently sensitive to outside

perturbations, component defects, and faults. Even the slightest defect or fault in

one of the cheapest components has the potential to cause a loss of mission or loss of

vehicle. Therefore, the reliability and safety of launch vehicles is of utmost importance

due to large impacts on cost, schedule, and risk.

First, the design, development, and operations costs associated with new launch

vehicles are immense. For example, the SpaceX Falcon 9, which is touted as a

“cheaper” alternative, has an estimated development cost of between $1B-$3B [80,

118]. Another example of this high cost is the price paid to launch a given payload,

which ranges from $50M-$500M per launch or $20k-$30k per kilogram [28, 139].

Along with the high price paid to launch a payload, it is important to note the often

one-of-a-kind nature of these payloads. This is especially true for manned spaceflight,

where loss of crew is a very large consideration. For non-manned flights, large satellites

(communications, surveillance, scientific, etc.) or interplanetary missions can easily

cost in the hundreds of millions to billions of dollars and take up to 10 years to

produce [19, 26, 146]. With so much at stake, the risk of losing such a payload is an

excellent example of why launch vehicles must be highly reliable.
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The un-reliability of a launch vehicle can also directly affect cost through changes

in schedule. A launch vehicle failure can cause delays in future launches, requiring

costly investigations and possibly major redesigns [166]. Failures can also affect the

launch schedule in terms of cancellation of future flights. This can be due to either

loss of customers (commercial LVs) or complete cancellation of the program (govern-

ment/military LVs) [29, 82]. An excellent example of the effects of LV failures is the

company Sea Launch, which lost a $400M satellite in 2013 after recovering from filing

for bankruptcy in 2009 [29, 39].

Over the past 60 years, the United States has had a variety of different launch

vehicles spanning from the many failures of the Vanguard program to the great success

of current vehicles such as the Delta or Atlas [30, 63, 141]. Historically, it has been

estimated that the combined overall probability of success for U.S. launch vehicles is

between 85 and 90% [25, 93]. It is interesting to think about the reliability of launch

vehicles in this sense, as a 1 in 10 chance of LOM is quite high considering the value of

a typical payload. For manned launch vehicles these stakes are even higher, requiring

vehicles with the highest reliability and safety.

The Russian Soyuz, which is currently used to ferry Astronauts and Cosmonauts

to and from the International Space Station, is considered to be the most reliable

vehicle in operation today [87]. The estimated probability of LOC for Soyuz is 1 in

400 flights [59]. The most recent American manned launch vehicle, STS (also known

as the Space Shuttle), had an estimated probability of LOC of 1 in 100 flights at the

end of its lifetime [61]. On ascent the Space Shuttle program only encountered one

catastrophic failure with the loss of Challenger in 1986 [94]. Thus, its demonstrated

safety was actually a bit higher than 1 in 100.

Although the safety numbers for recent manned launch vehicles are respectable,

future goals aim to increase vehicle safety by an order of magnitude. In 2004, the

NASA Astronaut Office produced a memo regarding the risk to crews on future
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launch vehicles. This memo requested that the probability of LOC be at most 1 in

1000 flights for next generation vehicles [105]. Since the release of the memo, many

authors have acknowledged 1 in 1000 as a requirement to be used in the assessment

of new vehicles [16, 59, 61, 142, 153].

The new goal of 1 in 1000 flights brings to light a large gap between current

technology and future requirements. From this gap, two motivating questions were

derived to guide the research. The first asks: What drives reliability and safety

throughout a launch vehicle’s life-cycle? The second pertains to the gap itself, asking:

Where can this increase in reliability and safety come from? In order to answer

these questions, a list of drivers for reliability and safety was developed from the

literature, which can be divided into three general categories: operating environment,

programmatic environment, and vehicle architecture.

The first category, operating environment, includes operational considerations

leading up to a launch as well as noise during vehicle operations. Factors such as

component storage, vehicle shipping, and vehicle assembly are often the topics of

launch site operations research [22, 38, 68, 69]. During transportation, events such as

shock and vibration, as well as thermal transients must be taken into account [63, 94].

Such events can have a negative effect on vehicle components, and may cause early

wear out or failure. Storage effects such as shelf life must also be taken into account

for components that will not be integrated into the vehicle for an extended period of

time [63, 94].

After the components have arrived on site, the proper assembly of the vehicle is

of utmost importance. Errors may occur during assembly that will cause failure of

the vehicle during launch [63, 129]. A recent example of the consequences of miss-

assembly is the failure of a Proton launch vehicle on July 2, 2013. In this case a set of

three yaw angular rate sensors were installed upside down, which caused the failure

of the vehicle upon launch [157].
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Another operating environment consideration is the launch trajectory. On the day

of launch, the vehicle’s trajectory is designed in order to ensure that its structural

capability is not exceeded [13]. The major concern with trajectory design is the

launch site winds and winds aloft [139]. The scrubbing of a launch due to winds

beyond allowable levels is a very common occurrence in the world of launch vehicles

[13, 139].

Improvements to vehicle reliability in the area of operating environment can be

made primarily by adhering to strict operational policy. For example, to avoid failures

caused by shipping effects or assembly errors vehicle inspection is critical [24, 63, 91,

94, 129]. Inspections can help to identify potential causes of vehicle failure and can

be used throughout fabrication, shipping, assembly, and pre-launch operations [63].

Other improvements to reliability in this area can be achieved by performing very

detailed analyses of the flight trajectory. This analysis ultimately feeds into the

go/no-go decision making process on the day of the launch.

The second category, programmatic environment, affects a vehicle throughout the

entire life-cycle. This category includes any drivers related to planning and decision

making. First and foremost is the effect of management style on reliability and safety.

The management style relates to the rigor put into design, testing, fabrication, pro-

duction, and assembly. Certain styles will require more control over many processes

or require the use of various safety improvement methods [129]. In general, more

control means the implementation of strict documentation and rigorous post test or

post flight data analysis [94, 108]. Other management styles may include incentives

for employees in order to ensure that the reliability and safety program is strictly

followed. An example of such a program is the NASA Silver Snoopy award, which

is given to employees or contractors who have made a significant impact on ensuring

vehicle safety [30].
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Another aspect of management style is the type of decision making that is per-

formed throughout the program. Decision making can vary greatly from program to

program, with some requiring very structured processes and others utilizing upper

managers to make key decisions [30, 94]. Obviously, certain decisions during the ve-

hicle’s life-cycle will have a major impact on its reliability and safety. An example

of the impact of decision making is the go for launch decision that was made for the

Space Shuttle Challenger [94]. Management made the decision to launch the shuttle

even though it was exposed to well below normal operating temperatures on the pad

the morning of the launch. This decision ultimately lead to the loss of the crew,

major investigations and redesigns, as well as a grounding of the shuttle for almost 3

years [27, 128]. Mitigation of these negative effects can be achieved by applying strict

continuous risk management and decision making techniques [109, 120].

In addition to management style, developer experience is also a major factor

[61, 91, 108]. Experience plays a key role in implementing the appropriate reliability

and safety programs throughout the vehicle life-cycle. It also relates to the amount

of knowledge possessed by the design team. At the beginning of the design phase, a

more experienced team is expected to have more insight in regard to reliability and

safety improvement strategies [108].

The final category of reliability and safety drivers for launch vehicles is vehicle

architecture. Vehicle architecture refers to the physical description of the vehicle,

including its subsystem types and specifications. This description includes variables

such as: manned/unmanned, number of stages, number of engines, engine cycle, fuel

type, oxidizer type, number of boosters, booster type, and redundancy.

One of the primary considerations for improving vehicle reliability using the vehicle

architecture is engine-out design [84, 85, 88, 135]. A vehicle with engine out capability

is expected to be more reliable because it can still deliver its payload to orbit if a

single benign engine failure has occurred. A great example of this capability is the
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Saturn V launch vehicle, which had engine out capability for its S-II second stage

[88]. During the launch of the Apollo 13 mission in 1970, the S-II center engine was

shutdown early leading to a deviation in the planned flight trajectory [127]. Due to

the engine out capability, the payload was still successfully delivered to orbit and

Apollo 13 was able to continue its mission to the moon.

In addition to the engine configuration, the engine cycle is also an important

factor that affects vehicle reliability and safety. The engine cycle will effectively

determine the complexity of the engine hardware that must be manufactured and

successfully operated. For example, an expander cycle engine is considered to be far

less complex than a gas generator cycle due to the inclusion of high pressure turbo

pumps and associated controls [61]. This complexity relates directly to the number

of components in the propulsion subsystem, and ultimately the number of potential

failure modes that can be encountered. Increasing complexity is generally expected

to decrease the reliability of the vehicle [63].

Another vehicle architecture parameter that affects reliability is propellant type.

Each different propellant combination will have its own considerations for proper

storage and use in a launch vehicle. The different types will introduce certain failure

modes into the system that may be unique between propellants [24]. For example,

the use of hydrogen may cause embrittlement issues, while material compatibility

with liquid or gaseous oxygen may also be an issue [84]. The explosive properties

of the propellants are also an important consideration in regard to crew safety in a

catastrophic failure event [100].

Related to the propellant type selection is the tank configuration. Tank configu-

ration refers to the design strategy, materials, and location of the tanks in relation

to other vehicle components. The first consideration for propellant tanks is the tank

locations, which stem from the initial design concept of the vehicle. A majority of

launch vehicles utilize an “in-line” configuration in which the propellant tanks are
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stacked on top of one another. In this configuration considerations must be made in

regard to the propellant feed lines, systems tunnels, and thermal management [91].

For other configurations, the location of the tanks in relation to other tanks or key

systems is an important consideration. This is especially important in catastrophic

failure events where a local explosion may lead to explosion of other tanks in the near

vicinity [100]. The location of the tanks in relation to other vehicle components can

also become an issue during nominal operations. For example, the thermal protection

system of the Space Shuttle external tank (ET) was made up of light polyurethane

foam, which often detached during launch [114]. Due to location of the ET immedi-

ately below the Space Shuttle orbiter, debris strikes to the orbiter were an additional

failure mode introduced into the system. This failure mode surfaced during STS-107

when the orbiter Columbia’s left wing was damaged by a foam impact at launch,

ultimately leading to the loss of the orbiter during re-entry [114].

The descriptions of architecture parameters given above are only a small subset

of the options that affect vehicle reliability and safety. Each of these architecture

options introduce failure modes into the system and may cause negative interactions

with other options. Consequently, as options are selected that define the baseline

vehicle, certain failure modes will be “locked-in” to the system. This has an obvious

effect on the vehicle reliability and safety during operations, as these failure modes

could cause LOM or LOC.

An important observation can be made at this point. Vehicle architecture affects

reliability and safety during operations, but it is decided upon during early design

when a baseline vehicle is selected. Unless a great amount of money and effort is spent,

the architecture will remain the same from conceptual design through operations.

Therefore, architecture decisions are of utmost importance to the reliability and safety

that a vehicle will achieve. This conclusion has been widely supported by authors in

the launch vehicle design community [14, 49, 91, 159, 168].
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1.2 Research Focus and Organization

Many authors support the importance of architecture selection on reliability and

safety; however, these effects are not typically taken into account during early design.

This is primarily because reliability analysis is considered to be a detailed design

activity [21, 60, 129]. Therefore the focus of this thesis is on the inclusion of reliability

and safety analyses during conceptual design. In order to make architecture decisions

that improve reliability and safety, the designer must be able to quantify these effects

prior to defining the baseline concept. The inclusion of reliability analysis upfront in

the design process gives the designer more information on which to base architecture

decisions. Ultimately, this will result in the selection of a vehicle that will have the

highest probability of meeting the reliability and safety requirements.

In order to address the movement of reliability analyses from the detailed design

phase into conceptual design a review of current techniques will be given first. Chap-

ter 2 begins with a review of the generic design process for launch vehicles, which is

followed by a discussion of requirements and guidelines for reliability analysis. The

first two sections of Chapter 2 are therefore used to illustrate the analyses that are

applied at certain points during the design cycle of a launch vehicle. Following this

discussion, specific techniques for including reliability and safety considerations dur-

ing architecture selection are identified. Observations are drawn from these existing

techniques, which leads to the development of the specific research objective for this

thesis in Section 2.4.

After defining the research objective, Chapter 3 presents the development of

the ConcepTual Reliability Growth Approach for CompariSon of Launch Vehicle

ArchiTectures (CONTRAST). Within Chapter 3 the method is developed step-by-

step using a combination of research questions, literature review, and experimen-

tation. A total of 6 research questions are presented in this chapter along with 3

experiments.
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Chapter 4 presents a detailed description of each of the steps within the CON-

TRAST method. The goal of the chapter is to provide enough detail to allow the

reader to reproduce and apply the method. At the end of Chapter 4 an example

problem is presented, which acts as a validation of the method output. This problem

illustrates the ability of the method to capture the reliability growth behavior of a

previous launch vehicle.

Following the validation exercise, Chapter 5 presents an application of the CON-

TRAST method to a relevant vehicle design problem. Within this Chapter the re-

quirements for research objective completion are verified using the output of the

method. In addition, detailed discussion of the method output versus a previous

state of the art tool is presented. Chapter 5 concludes with analysis of the future

block upgrades for the vehicle of interest.

The final chapter begins to wrap up the thesis by presenting a summary of the

findings from the literature review, experiments, and application problem. The second

section in Chapter 6 presents the contributions stemming from the completion of this

work. Finally, Section 6.3 identifies areas of interest for future research and extension

of the CONTRAST method.
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CHAPTER II

BACKGROUND

After narrowing the focus of this thesis to look at the effects of vehicle architecture on

reliability and safety, another motivating question can be derived. This question will

be used to guide the background literature survey, which leads to the derivation of

the overall research objective of the thesis. The additional motivating question asks:

what reliability and safety techniques are used throughout a typical launch vehicle

design process? This question seeks to identify any current approaches for reliability

and safety assessment of launch vehicles. While answering this question, the types

of techniques as well as their applicability during specific steps in the design process

will become apparent. This can ultimately be used to direct the development of the

CONTRAST method.

2.1 Launch Vehicle Design Process

The motivating question identified above addresses the type and applicability of var-

ious reliability and safety techniques during launch vehicle design. In order to un-

derstand the application of these techniques, a review of the typical design process

is necessary. This process can be broken in to four general phases: Pre-Conceptual,

Conceptual, Preliminary, and Detailed [14, 43, 116].

The first phase, pre-conceptual, consists of design studies that examine various

feasible vehicle concepts for general missions of interest. The primary purpose of

this phase is to identify vehicle concepts from which new projects can be selected

[116]. The identified vehicle concepts may also lead into advanced studies, which may

extend for several years. Advanced studies focus on top-level system requirements,

mission goals, and concept of operations [116]. Pre-conceptual design activities are
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usually performed continuously by concept study groups [116]. It is important to

note that baseline vehicle architecture selection is typically performed at the end of

the pre-conceptual phase or during the conceptual phase.

The second phase, conceptual design, includes a more detailed look at baseline

mission concepts, mission requirements, and mission objectives. During this phase,

activities become more formal and the emphasis is shifted towards optimality rather

than feasibility [116]. More detailed analysis is performed using top-level sizing to

produce estimates of performance, cost, technology development needs, and risk [14].

Using identified selection criteria, the number of feasible concepts being considered

is narrowed as the design progresses towards a baseline. Thus, a typical result of the

conceptual design process is the selection of a single baseline concept [14, 116].

The preliminary design phase is characterized by increased fidelity analysis of all

significant subsystems [14]. During this phase the project level performance require-

ments are used to compile a complete set of system and subsystem design specifi-

cations for both flight and ground elements [116]. An evolving baseline is carried

throughout the phase, which may encounter fundamental changes to its architecture

or small refinements to the subsystem designs. At this point engineering test items

may also be developed in order to derive data for evaluation of project risk or to

demonstrate new technology [116]. The preliminary design phase ends with a prelim-

inary design review (PDR) in which all analysis and design work is used to generate

the final design-to specifications for the system. After the PDR, any design changes

are expected to represent successive refinements, with no fundamental changes [116].

The fourth phase, detailed design, provides complete specification of all hardware

and software of the system [14, 116]. These specifications will allow for the production

of test articles as well as generation of detailed analyses to continue in verifying the

performance of the system. The analyses and tests are performed in order to increase

the confidence that the design will function as expected [116]. In addition to refining
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the design, plans for manufacturing, integration, operations, and support are also

considered. The final product of the detailed design phase is a full definition of the

system to be fabricated, including any relevant project plans going forward [14, 116].

At this point the vehicle is ready to proceed into production and operations.

2.2 Launch Vehicle Reliability and Safety Programs

Existing reliability and safety techniques can now be mapped to the generic design

process described above. In order to identify the reliability and safety methods that

are in use today, a literature search was focused on three primary entities that control

much of the launch vehicle domain. The three primary entities are the National Aero-

nautics and Space Administration (NASA), the U.S. Department of Defense (DoD),

and the European Cooperation for Space Standardization (ECSS). It is expected

that almost any new launch vehicle program in the world would be governed by the

requirements and guidelines laid out by these organizations.

In the United States, the DoD has published many requirements documents and

military standards that are used by any contractor seeking to carry government pay-

loads. A few examples include United Launch Alliance (ULA), Orbital Sciences,

or Alliant Techsystems (ATK) [126, 160]. Commercial companies seeking to produce

manned spacecraft, such as SpaceX or Sierra Nevada, will follow various NASA guide-

lines and requirements in addition to DoD military standards. In Europe, the ECSS

produces guidelines, standards, and requirements documents that are used by the

European Space Agency [55]. Due to the widespread use of the documents produced

by these three entities, their requirements and standards represent a full list of safety

and reliability methods that are used today.

2.2.1 NASA Requirements and Guidelines

The design process as defined by NASA follows the general phases outlined in Section

2.1 very closely. The four design phases identified by the NASA Systems Engineering
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Handbook are Pre-Phase A, Phase A, Phase B, and Phase C [116]. Pre-Phase A

refers to the pre-conceptual design phase, where broad studies of vehicle concepts

are performed. Phase A continues conceptual design, ultimately leading towards the

selection of a final baseline concept. Phase B moves into the preliminary design phase

and may also constitute production of test articles and mockups. Phase C represents

the detailed design phase, in which the end product specifications are finalized in

preparation for production.

The NASA Standard 8729.1, Planning, Developing, and Maintaining an Effective

Reliability and Maintainability Program states that the reliability program should

be tailored to each specific program in order to capture the effects deemed most im-

portant to project success [112]. In addition to a tailored reliability program, the

NASA handbooks call for a proactive approach for risk reduction, which includes two

components; Risk-Informed Decision Making (RIDM) and Continuous Risk Manage-

ment (CRM) [117, 120]. Continuous risk management calls for the application of

techniques to track and reduce risk throughout the system’s life-cycle. The RIDM

process is one of the techniques applied in CRM [109]. In the RIDM process, three

steps are used to support decision making; Identification of alternatives, Risk Analysis

of Alternatives, and Risk-Informed Alternative Selection [109]. The RIDM approach

is not a reliability and safety assessment technique, but its second step can include

such methods.

The RIDM handbook provides an outline of applicability of some specific relia-

bility and safety techniques during the various design phases. In Figure 1, a table

from the RIDM handbook is displayed, which identifies the applicability of various

reliability and safety techniques throughout the design phases [109].
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Figure 1: Applicability of various reliability and safety methods during design

As illustrated in the figure, a list of four types of reliability and safety assessment

techniques are mapped against five life-cycle phases. The first four phases, Pre-Phase

A to Phase C represent the design phases of the program. Two additional phases

are included in the figure, Phase D and Phase E. These represent system assembly,

integration, and test, and system operations, respectively. Through the design phases

the figure shows that only the first three types of methods are applicable, with the

fourth method being potentially applicable at the conclusion of Phase C.

The first identified type is similarity, which utilizes comparison and extrapolation

to estimate reliability and safety [109]. Similarity methods often use operational

data from past programs that is determined to be technically representative of the

new system [109]. This data can then be subjectively adjusted depending upon the

assumed differences between the complexities of the systems. After adjustment, the

data is assumed to represent the expected reliability of the new system.

The second assessment type is first-order parametric. First-order techniques are

primarily used during the conceptual and pre-conceptual design phases. This type

is similar to the similarity method in that it utilizes data from past programs. In

this estimation technique simple mathematical expressions are derived based upon

the historical data, which are then used to estimate the reliability of the new system.

An implicit assumption of this technique is that the same factors that shaped the
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reliability and safety in the past will affect the system being assessed [109].

Detailed logic modeling is identified as the third assessment type. These tech-

niques are generally applicable during Phase B, which is preliminary design. Detailed

logic modeling involves “top-down” development of scenario-based or discrete event

logic models [109]. Specific examples of logic models include fault tree analysis, event

trees, and reliability block diagrams. Detailed simulation or testing can be used in

these techniques to develop pdfs for quantification of the model [109]. Typically these

pdfs give the analyst the probability that certain undesired top-level events, such as

LOC or LOM, will occur.

2.2.2 DoD Requirements and Guidelines

The design process as defined by the U.S. Department of Defense Military Standards

varies from the general process discussed in Section 2.1. In MIL-STD-1543B, Reliabil-

ity Program Requirements for Space and Launch Vehicles, four acquisition phases are

laid out [43]. These phases are the conceptual phase, demonstration and validation

phase, full-scale engineering development phase, and the production phase. The first

two phases will be discussed in this section because they correspond to the major

design activities. The engineering development phase and the production phase refer

to manufacturing and operation of the system, respectively, thus they will not be

included in the discussion below.

The conceptual phase corresponds to the pre-conceptual and conceptual design

phases discussed in Section 2.1. This phase involves identification and exploration

of vehicle concepts that have the potential to satisfy a validated operational need

[43]. During this phase the reliability program objectives are to derive values of

reliability characteristics and to refine the quantitative system reliability goals based

on system level trade studies [43]. For this phase, functional level failure modes and

effects analysis is identified as the primary method of reliability assessment [43]. As
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defined by MIL-STD-1619A, Procedures for Performing a Failure Mode, Effects, and

Criticality Analysis, the process of FMEA also includes the creation of a physical or

functional block diagram of the system being analyzed [40].

The second phase, demonstration and validation, focuses on refining selected can-

didate concepts by performing more extensive studies and analyses or developing test

hardware [43]. This phase corresponds to the preliminary design phase and the early

stages of the detailed design phase discussed in Section 2.1. The goal of this phase is

to demonstrate the feasibility of one or more of the candidate concepts before entering

into the full-scale development phase [43].

During the demonstration and validation phase, a few different reliability and

safety methods are identified for use. The first is the implementation of a formal

failure reporting and corrective action system [43]. This method is implemented only

in the case where physical developmental testing will be carried out on components

within the system. Additional techniques such as FMEA and generic system level

math models are identified for use during the validation phase. The mathematical

models discussed in the military standards are equivalent to the first-order parametric

models that were discussed in the NASA literature. These models rely on historical

data and similarity to past systems in order to produce reliability estimates for new

vehicles [42].

Although less documentation is available, the military standards identify many

techniques already contained within the NASA documentation. These techniques

include failure modes and effects analysis, reliability block diagrams, hazard analysis,

stress-strength analysis, parts count method, and similarity method.

2.2.3 ECSS Requirements and Guidelines

The design process as defined by the European Co-operative for Space Standardiza-

tion varies from the general process described in Section 2.1. The ECSS requirements
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document, “Space Product Assurance: Safety”, illustrates a five phase design pro-

cess including utilization [53]. As with the DoD requirements discussed above, only

the early design phases will be included in this section. Thus, the detailed defini-

tion, production, and qualification testing phase and the utilization phase will not be

included.

The first phase of the design process, mission analysis and needs identification,

corresponds to the pre-conceptual phase from Section 2.1. During this phase, the goal

of the reliability and safety program is to support the identification of sources of safety

risk as well as the performance of preliminary trade-off analyses between alternative

system concepts [53]. The ECSS requirements specifically call for the use of prelim-

inary hazard analyses and comparative risk assessment of the concept options [53].

The comparative risk analysis from these requirements is equivalent to the similarity

methods called out by the NASA and DoD requirements. For similarity comparisons,

the ECSS also presents a methodology for the proper selection of reliability data [54].

The second phase of the design process corresponds to the conceptual design phase

discussed in Section 2.1. This phase is the feasibility phase through which design

alternatives are pared down until a single baseline concept remains [53]. During the

feasibility phase, the primary goal of the reliability and safety program is to support

trade-off analyses in arriving at a concept that has acceptable safety risk considering

the project constraints [53]. This goal is met through the continued use of hazard

analyses and similarity techniques.

The third phase of the ECSS design process is the preliminary definition phase,

which corresponds to the preliminary design phase discussed in Section 2.1. During

the preliminary definition phase the design process proceeds with a single baseline

concept and further details in regard to the system design and operations are devel-

oped. The goal of the reliability and safety program during this phase is to support
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the detailed optimization of the system design and operations [53]. This goal is ac-

complished through the use of the same techniques from the previous phases and

other techniques. The additional reliability and safety techniques used during the

preliminary definition phase are fault tree analysis and failure modes and effects

analysis.

Similar to the NASA and DoD requirements and guidelines documents a very com-

mon set of reliability and safety techniques are identified by the ECSS requirements.

These techniques include similarity method, failure modes and effects analysis, fault

tree analysis, and hazard analysis, all of which have been identified previously.

2.2.4 Observations

After a review of the guidelines and requirements documents from three major en-

tities, two primary observations can be derived. First, it was observed that many

reliability techniques exist for application throughout the vehicle design process. The

documentation from NASA, DoD, and ECSS share a common set of reliability and

safety analysis tools, which range from qualitative techniques such as FMEA to de-

tailed quantitative techniques such as discrete event logic modeling. The list of tools

identified within the documentation includes; FMEA, hazard analysis, fault trees,

reliability block diagrams, similarity, parts count, stress-strength, and detailed logic

modeling. This ultimately shows that some form of reliability analysis can be per-

formed at any point in the design process.

The second observation from the review refers to the goals of the reliability anal-

yses applied throughout the design cycle. Although reliability analysis can be per-

formed during each phase, the focus of the analyses changes drastically as the design

progresses. As noted in the NASA standards, detailed logic modeling and statistical

methods are identified as the primary tools for Phase B or later, which is after the

baseline vehicle selection has occurred. The purpose of these tools is to pinpoint a
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more accurate estimate of the expected reliability of the vehicle. As stated by the

NASA Systems Engineering Handbook, during the latter phases, detailed techniques

are used to verify that the design is meeting its risk and reliability goals [116].

The reliability analysis goals during the latter design phases are mirrored in the

DoD and ECSS standards as well. During the latter phases of the DoD design pro-

cess, the reliability models are said to progress from the subsystem level down to the

component and part levels as details become more firm [43]. The ECSS documenta-

tion notes that the goal of the reliability and safety program during the latter phases

of design is to support detailed optimization of the system [53].

Considering the early phases of design, the techniques identified by NASA, DoD,

and ECSS serve a different purpose. Due to the lack of design knowledge at this point

in the process, it is very difficult to pinpoint an exact value for the system reliability.

Instead, the key contribution of the reliability analysis is to make the designers aware

of impacts of their decisions on system reliability [116]. Ultimately, the focus of the

techniques applied during early design is to capture the relative effects of decisions

on system reliability. Although the techniques cannot give an exact estimate for the

system reliability at this point in time, the ability to compare between system options

adds value to the design process.

The goals of reliability analyses during early design are therefore to support the

decision maker during initial system definition. This goal links directly to the dis-

cussion from Chapter 1, which identified the importance of architecture selection on

the eventual reliability and safety of the system. A second motivating question can

be derived at this point, which asks: what techniques exist that utilize reliability and

safety as figures of merit for selection of a baseline vehicle architecture?
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2.3 Reliability and Safety Based Architecture Selection

The second motivating question seeks to identify specific existing techniques that can

be used to infuse reliability and safety considerations into baseline system selection.

The ability to capture these effects on reliability and safety represents the primary

approach for improving reliability and safety in the area of vehicle architecture. In

all, four existing approaches were identified that address vehicle architecture selec-

tion. The qualitative techniques will be discussed first, followed by the quantitative

approaches.

2.3.1 Qualitative Methods

The first two methods to be reviewed use a hazard analysis based approach. They uti-

lize qualitative information collected from subject matter experts to produce ranked

lists of architectures deemed to be the “safest”. The first method, Hazard-based

Safety/Risk analysis, was proposed by Dulac and Leveson in 2009 [49]. The proposed

methodology begins by identifying all system level hazards and their associated sever-

ities. The identification step is achieved through the completion of hazard worksheets

by subject matter experts. After the system level hazards have been identified, the

next step is to identify any mitigating strategies for each hazard as well as the asso-

ciated impact of each strategy. These impacts are based upon a standard four point

scale, which can be seen in Figure 3 [49].

For each of the identified architecture options, the impact scores are mapped

across the identified hazards utilizing a simple table. Figure 2 shows an example

section of the table used by Dulac and Leveson [49]. After populating the table, the

various architecture alternatives can be evaluated. First, by selecting an option in

each category an impact factor for each hazard is determined. For each hazard a

relative residual risk index is calculated, which is based upon the ratio between the

selected option impact factor and the overall maximum possible value of the impact
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factor for the given hazard. A relative severity index is then created for each hazard

by multiplying the relative residual risk index by the square of the given hazard’s

severity. After generating relative severity indices for each of the hazards in the table,

the overall residual safety risk metric is obtained. This metric is calculated using a

weighted average of the relative severity indices across all the hazards. After repeating

this process for all the possible combinations of architecture options, a ranked list can

be created. The ranked list represents the architectures that are expected to be at

the least risk of encountering the identified hazards.

Figure 2: Sample hazard mitigation table [49]

Figure 3: Hazard mitigation impact scale [49]
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The method proposed by Dulac and Leveson provides the analyst with a traceable

way to incorporate system safety into early design. This method offers the benefit

of being able to directly compare architectures before a selection is made. It is also

very simple to perform as long as subject matter experts are available to give hazard

information.

The primary issue with this method is that it does not produce quantitative

estimates for the architecture safety. This becomes a problem when trying to compare

two architectures from the ranked list. For example, consider an analyst trying to

decide between architecture #1 and architecture #2 from the list. There is no way for

the analyst to know how much safer option #1 is than option #2. In this sense the

analyst will not know the relative cost and benefit of selecting architecture #1 over

architecture #2. Another issue with this method is the reliance on subject matter

expert input. Although SME input in itself is not a weakness, it does limit the number

of architectures that can be evaluated. The SME input portion of this method could

take a very long time to complete if many different architecture options were being

considered.

The second qualitative method was proposed by Fabisinski and Maples [56]. This

method utilizes a Source-Taxonomy based approach for risk identification in space

architectures. The analysis begins with the creation of a taxonomy of possible risk

sources for the program. Based upon this taxonomy a questionnaire is created for

each discipline expert to answer. The purpose of the questionnaire is to identify which

of the risk sources from the taxonomy are applicable to some aspect of the discipline

expert’s field. Ultimately, the questionnaire reveals which risks are related to each

risk source.

After performing the questionnaire, the resulting list of risks is vetted by the

analyst. Any risks considered as very low likelihood are candidates for elimination

from the list. The remaining risks are then given a likelihood and consequence value
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by the discipline experts. After assigning likelihoods and consequences an expected

risk value is calculated for each risk in the list. This score is simply the product of the

likelihood and consequence values. In order to evaluate the aggregate risk score for

a candidate architecture, the expected risk values from all the risks applicable to the

specific architecture are used. This score is used to produce a major risk report for the

given architecture, which allows the analyst to produce a ranked list of alternatives.

The method proposed by Fabisinski and Maples has many of the same strengths

and weaknesses as the method proposed by Dulac and Leveson. The first benefit of

using this method is the ability to assess the effects of various risk factors on the

overall system architecture. This allows analysts to identify potential weak points

in the design or concept of operations for the design reference mission. The method

has also been incorporated into an easy to use tool called the Advanced Concepts

Evaluating Risk Tool (ACERT), which has been tested by the Advanced Concepts

Office at Marshall Space Flight Center (MSFC) [56].

On the downside, the ACERT tool requires the same amount of SME input as

Dulac and Leveson’s method. This can severely limit the number of architectures

that can be evaluated due to the large time commitment for developing the taxonomy

and performing the questionnaires. The issue of direct comparison also comes into

play with this method. Since the likelihood and consequence values are entered

as probabilities the analysts can get an idea of the relative increase or decrease in

reliability and safety that may occur by switching between architectures. However,

the likelihood and consequence values are still subjective in nature, which may cause

the comparisons to be suspect.

Overall, the qualitative methods available for evaluation of architecture effects on

reliability and safety share the same strengths and weaknesses. They allow for the

consideration of reliability and safety during early design, but are ultimately limited

in applicability due to their reliance on qualitative and subjective data. The next
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section will discuss the existing quantitative methods for reliability and safety driven

architecture selection.

2.3.2 Quantitative Methods

The first example of a quantitative method for evaluation of reliability and safety for

architecture selection was presented by Krevor in 2007. Krevor proposed a methodol-

ogy to link cost and reliability, which accounted for a few different vehicle architecture

parameters [88]. In his study, the method was applied to the reliability prediction

of the Saturn V and SLS launch vehicles. Krevor’s reliability assessment method

utilized fault tree analysis to produce estimates for probability of LOM. The fault

trees were generated based upon the selection of two primary architecture options

redundancy and engine out. It is important to note that Krevor did not include any

of the other architecture options, as an assumption was made that the preliminary

down selection of the baseline concept was previously performed. Even though his

method did not include all architecture options it does demonstrate the applicability

of FTA to architecture evaluation.

The primary strength of Krevor’s method was in the rapid evaluation of the candi-

date architectures. Automatic generation of the fault trees allowed Krevor to evaluate

all of the options in the defined architecture space. The main issue with this method

however, is related to the lack of a full architecture evaluation. As was mentioned

previously, most of the architecture options were assumed away, leaving only two to

play with. This severely limited the architecture space that was evaluated.

The second qualitative method example is the Flight-oriented Integrated Reliabil-

ity and Safety Tool (FIRST), which was developed by SAIC [16, 153]. This tool uti-

lizes preliminary vehicle descriptions along with historical data from previous launch

vehicle elements to produce reliability and safety estimates in the form of probability

of LOM or LOC [16, 153]. Due to its use of historical data the FIRST tool can be
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classified as a type of similarity method. To produce a reliability or safety estimate

for a new vehicle, the similarity of that vehicle to the data in the database is assessed.

The analysts are also able to adjust the data accordingly based upon predictions that

reflect future testing or design improvements. The FIRST tool displays the reliability

and safety output as a probability distribution for LOM or LOC, respectively. Figure

4 illustrates distributions produced by FIRST for the NASA Exploration Systems

Architecture Study in 2005 [153].

Figure 4: Probability of LOC output from FIRST tool

As can be seen in the figure, direct comparisons between vehicle concepts can

be made. The primary benefit of the FIRST tool is that it produces quantitative

predictions of both reliability and safety. This allows the analyst to assess the relative

difference in expected LOM and LOC between two concepts. It also allows the analyst

to rapidly assess whether or not a given concept will be able to meet the reliability

and safety requirements for the program. The FIRST tool gives analysts the ability
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to rapidly assess many different vehicle architectures in a quantitative manner.

It is important to note that the FIRST tool uses the assumption that all of the

vehicles have reached a “mature” state. This means that the vehicles have already

gone through a reliability growth period. Thus the output distributions represent the

maximum expected reliability or safety of the vehicle. The mature assumption is the

largest weakness in the FIRST tool, which can lead to a major consequence.

The reliability growth and maturation process of launch vehicles has been well

documented [61, 63, 78, 101, 108]. For some vehicles this process may take only a

dozen flights, yet for others it may take on the order of 100’s to reach maturity [61].

For this reason the mature reliability and safety distributions from FIRST are an

incomplete picture of the expected performance of the vehicles. If two vehicles have

very similar reliability and safety distributions, there is not a way for the analyst to

ensure that one or the other will actually reach the required reliability and safety.

For example, consider a new program that is expected to fly on the order of 25

flights before retirement of the vehicle. Using the output of the FIRST tool a vehicle

is selected that has a very desirable reliability distribution, which is well above the

required reliability for the program. However, if this vehicle requires more than 100

flights to reach maturity, there is no guarantee that the required reliability will be

achieved. At the last planned flight of the program, the reliability distribution may

be much different than the mature distribution produced by FIRST. This example

identifies a major consequence of using mature estimates to select an architecture.

The use of these estimates without an evaluation of the expected time to maturity may

lead to the selection and commitment to a vehicle that will not meet the reliability

and safety requirements in the future.

The two quantitative methods reviewed in this section represent the current state

of the art in reliability and safety driven architecture selection. These methods give

the analyst the ability to assess architecture trades during early conceptual design.
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However, many weaknesses in these methods have been identified. These weaknesses

helped lead to the conclusion that improvement is needed in the area of reliability

and safety driven architecture selection. From this conclusion, the specific research

objective for this thesis can be derived.

2.4 Research Objective

The primary motivation for this research is the gap between current launch vehicle

reliability and safety and the future goals set forth by the NASA Astronaut Office.

It has been identified that vehicle architecture has a large effect on reliability and

safety, making architecture decisions crucial to the success of new programs. Due

to the fact that architecture decisions are made during early conceptual design, they

are often made with very limited knowledge of the final design. Therefore, it is

important to evaluate the effects of architecture decisions on reliability and safety in

order to make a more informed selection of the initial concept. In the previous section

existing methods for evaluating reliability and safety of conceptual launch vehicles

were identified, however they lack the ability to fully support decision making at this

point in the design phase. Therefore, the goal of this thesis is to improve upon current

reliability and safety assessment methods for early conceptual design. Specifically,

improvements will be made to help facilitate architecture decisions during vehicle

concept selection, which is reflected in the overall research objective.
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Research Objective

To formulate and implement a method that will quantitatively

capture launch vehicle architecture effects on reliability and safety, in

order to facilitate more informed decision making during early

conceptual design.

In order to meet the overall research objective, requirements were derived whose

completion will signify successful achievement of the objective. These requirements

were derived based upon the identified weaknesses of the current techniques and are

enumerated below. First, the qualitative techniques do not give an accurate picture

of the relative difference between two concepts. This leads to the first requirement,

which states that quantitative estimates are desired.

The second requirement stems from some of the shortcomings of the quantitative

techniques in Section 2.3.2. Specifically, the output of the state-of-the-art FIRST tool

provides only a mature reliability or safety estimate for the vehicles. This distribution

does not capture the full picture of the risk of meeting the future requirements and

does not provide a large amount of information with which to compare concepts.

The final requirement stems from the ability of the existing techniques to evaluate

large architecture spaces. The qualitative techniques are fairly limited because they

require a large amount of subject matter expert input for each architecture option.

A trade space with tens of thousands of concepts would therefore be impractical

using these techniques. The quantitative techniques can assess more vehicles than

the qualitative techniques; however, issues may arise when considering new and novel

concepts. For this reason the third requirement calls for the method to have enough

flexibility to include novel concepts, while simultaneously enabling the analysis of
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large architecture spaces.

1. The method shall produce quantitative estimates for reliability and/or safety of

the given launch vehicle concepts

2. The method shall have sufficient accuracy to enable comparison between unique

but similar concepts

3. The method shall be flexible enough to evaluate any potential launch vehicle

concept within the defined architecture space

With the research objective and requirements for objective completion in place,

the derivation of the method can proceed. First, it is important to clarify the primary

goal of the method itself when applied during early design. As stated in Section

2.2, availability of design information during the conceptual phase severely limits

the reliability and safety analysis that can be performed. Due to this restriction

the analyses at this point in the design process are focused on supporting trade-

offs as the design progresses. The CONTRAST method developed in the following

chapter is therefore aimed at supporting such trade-offs for initial baseline vehicle

selection. Thus the output of the method is more concerned with capturing the effects

of architecture options relative to one another than estimating the exact reliability of

each specific vehicle. During conceptual design an exact estimate cannot be expected,

however, the ability to determine relative differences in reliability and safety between

concepts will be a valuable tool for the designer.
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CHAPTER III

METHOD DEVELOPMENT

The development of the research objective for this thesis identified the need for im-

provement in the capture of architecture effects on reliability and safety during early

design. In the previous section the ultimate goal of the method was stated, which is

to support trade-offs between vehicle concepts using reliability and safety as figures

of merit. The method therefore represents an additional decision support tool for use

during conceptual design. To begin the development of the method a generic set of

steps will first be defined using comparisons to existing decision-making processes.

These generic steps will serve as a backbone for the derivation of the method.

3.1 Solution Approach

The first decision-making process to consider is NASA’s Risk-Informed Decision Mak-

ing (RIDM), which was referenced in Section 2.2. This process is a logical starting

point because it relates directly to the assessment of risk within vehicle programs.

The goal of the process is to provide support for key decisions including design op-

tions, source selection in major procurements, or budget allocation [109]. The RIDM

process contains three primary parts, each with two steps. An illustration of the

RIDM process can be seen in Figure 5.

The first part of the RIDM process is to define the alternatives. This part in-

volves two steps, the first of which requires an understanding of the expectations and

program measures of performance. The second step represents the identification of

all possible alternatives for the problem of interest.

The second part of RIDM is to analyze the alternatives identified within part 1.

The first step is to determine the methodologies to be used in the analysis. After
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selecting the analysis approach the second step within this part assesses each of the

alternatives.

The final part of the RIDM process involves risk-informed alternative selection.

The first step within this part requires an evaluation of the performance of the alter-

natives versus the program measures of performance from part 1. Finally, through

deliberation and assessment of the results an alternative is selected and the rationale

is recorded.

Figure 5: NASA Risk-Informed Decision Making process [109]

Although the RIDM process is specific to risk assessment of alternatives, it maps

well to more generic processes. First, the three steps of the RIDM process mirror the

three steps of the Concept Exploration and Refinement (CER) approach defined by

the DoD [163]. Within CER three major sub-processes are defined; characterization

of the trade space, characterization of the alternatives, and analysis of the alternatives

[163]. The first two steps of the CER process map directly to part 1 of the RIDM

process. The second is in line with part 2 of RIDM, which performs the analysis of

alternatives.
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The RIDM process can also be mapped to a more detailed but generic design

decision support process; the Georgia Institute of Technology Integrated Product and

Process Development approach (IPPD). A graphic overview of the IPPD methodology

is shown in Figure 6. The approach was originally developed to evaluate technology

for affordability [147]. However, the center column represents a generic top-down

decision support process that can be applied to any problem of interest.

Figure 6: Georgia Tech IPPD Methodology [148]

The first part of the RIDM process can be mapped directly to the top four boxes

within the center column of the IPPD methodology. The first step in part 1 of RIDM

requires an understanding of the stakeholder expectations, which can be considered

the same as the “Establish the Need” step within IPPD. The following steps of IPPD,

“Define the Problem” and “Establish Value”, correspond to the derivation of the

performance measures within RIDM. The fourth step in the center column of the

IPPD methodology is “Generate Feasible Alternatives”, which is the final step within

the first part of RIDM. The remaining two boxes within the central top-down decision
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support process of IPPD map directly to the second and third parts of RIDM. The

“Risk Analysis of Alternatives” part in RIDM corresponds to “Evaluate Alternatives”,

while the final “Risk-Informed Alternative Selection” part maps to “Make Decision”.

Considering the simple setup of RIDM and the generic nature of IPPD a generic

three step process can be derived. This process represents a generic reliability and

safety based decision approach, which will be used to guide the method development.

Figure 7 shows a mapping of the RIDM and IPPD steps to the generic process.

First, the Establish the Need, Define the Problem, Establish Value, and Generate

Feasible Alternative steps will be combined into a single Problem Definition step. For

the purpose of reliability assessment of vehicle architectures, this step will correspond

to the identification of architecture options as well as the metric of interest such as

LOM, LOV, or LOC. The output of this step will be feasible vehicle architectures to

be analyzed.

The Evaluate Alternatives and Risk Analysis of Alternatives steps within IPPD

and RIDM, respectively, will also combine into a single Reliability and Safety Anal-

ysis step for the CONTRAST method. This generic step will house the designated

approach for evaluating the reliability and safety of the given vehicle concept. Ul-

timately, this analysis approach will be determined based upon the output that is

desired for successfully performing architecture comparisons. The final Make Deci-

sion step will therefore be stated as Architecture Comparison. The ultimate goal of

this step is to identify potential baseline concepts that will have the greatest proba-

bility of meeting the reliability and safety requirements of the program.

A generic three step reliability and safety based decision-making approach has

now been defined. These steps will be used to help guide the development of the

CONTRAST method. A transposed version of the generic process can be seen in

Figure 8, which will be used to trace the progress of the method development through

the remainder of the chapter.
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Figure 7: Mapping of RIDM and IPPD processes to generic reliability and safety

based approach
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Figure 8: Generic reliability and safety based decision-making process

3.2 Research Question 1: Desired Output for Architecture
Comparisons

After developing the generic process for reliability and safety based decision-making,

the CONTRAST method can be derived. As stated in the previous section, the

reliability and safety analyses performed within the second generic step will be de-

pendent upon the desired output of the method. Therefore, the logical starting point

for development is to look at the final step, Architecture Comparison. With the re-

search objective and associated requirements in mind a desired output format can be

selected, which will enable the successful comparison of vehicle architectures based

upon their effects on reliability and safety. To address the output format, research

question 1 was posed.
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Research Question 1

What form of reliability and safety information is necessary to enable

comparisons between unique launch vehicle concepts during early

design?

In order to answer research question 1, a review of the output formats of existing

reliability and safety techniques can be used. The following section will therefore

review existing reliability and safety techniques in order to identify the options for

output format. After identifying the output options, the derived requirements for

research objective completion will then be applied to help select the desired format.

This discussion is presented in Section 3.2.2, which results in the statement of an

assertion to research question 1.

3.2.1 Existing Reliability and Safety Methods

In Section 2.2 current reliability and safety programs for launch vehicles were dis-

cussed. These programs included relevant handbooks, guidelines, and requirements

documents from NASA, DoD, and ECSS. From these documents a list of common

techniques for reliability and safety assessment during early design can be identified.

The following sections review each of these techniques in more detail in order to iden-

tify the various output formats. The methods reviewed in this section represent both

qualitative and quantitative approaches and are presented in no particular order.

3.2.1.1 Stress-Strength Analysis

Stress-Strength interference theory is a general model of reliability that calculates

the probability that the stress applied to a component does not exceed its strength

[46, 106]. Figure 9 illustrates a notional Stress-Strength diagram, which shows the
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probability density functions of the applied stress and component strength. The area

labeled interference is the area where a component failure may occur. The reliability

can be written as the probability of the stress, s, being less than the strength, S:

Rc = P (s < S) (1)

Figure 9: Notional Stress-Strength Diagram [46]

In order to calculate the value of the component reliability from the Stress-

Strength diagram, the probability density functions of the curves must be known.

Based upon these pdfs the reliability can be calculated using Equation 2 from refer-

ence [46]:

Rc =

∫ ∞
−∞

fstress(s)

[∫ ∞
s

fstrength(S)dS

]
ds (2)

where, fstress(s) is the pdf of the applied stress and fstrength(S) is the pdf of the

component strength.

The Stress-Strength approach is particularly useful in situations where systems

are loaded a single time. The resulting reliability estimate is the probability that

the system survives the loading, thus the estimate is not a function of time [95].

Stress-Strength analysis is therefore well suited for analysis of one-shot devices such

as launch vehicles [46, 95].

It is important to note that a large amount of information may be needed in order

to produce a reliability estimate for a part using this approach. The stress-strength
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interference method assumes that the pdfs of the stress and strength are known,

which may not be the case in practice. For early design these pdfs may be ill defined

and require broad assumptions. This will result in a reduction in the accuracy of the

reliability estimate. Depending upon the application of the Stress-Strength approach,

the resulting reliability estimate will be in the form of a single point or distribution

representing the expected probability of success.

3.2.1.2 Parts Count Method

The Parts Count Method (PCM) is an estimation technique that relates the number

of parts found in a system to its expected reliability. Typically, the system count is

defined as the total number of physically separate parts that are not composed of

an assembly of smaller parts [64]. When performing the parts count, the parts are

usually divided into generic type classes [42]. The method then assumes a constant

failure rate for each of the type classes, which can be used to estimate the reliability

of the system [42]. These failure rates can be obtained from generic equipment failure

rate databases such as MIL-HDBK-217F, which contains failure data for electronic

equipment [44].

Due to its simplicity, the parts count method is very useful for generating com-

parisons and approximate reliabilities for systems with different configurations during

preliminary design [4]. It is important to note that this approach is most useful dur-

ing the later portions of the preliminary design phase when the number of parts in

each generic category is not expected to change [42]. The PCM approach does not,

however, require very detailed knowledge of the layout of the parts within the system

as it assumes that all parts are in series [42]. The use of generic failure rate data also

allows PCM to produce reliability estimates without detailed design information such

as part stress levels [138].

The widely accepted approach for performing PCM also includes a factor for the
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quality of a given part. This quality factor can be used for part types where quality

level data is available [42]. The quality factor is included in the model in order to

capture differences between the part types such as manufacturing tolerance. This

factor can also account for maturity of the manufacturing process [44]. A quality

factor of 1 can be assumed for parts that are procured in accordance with applicable

specifications [42].

Equation 3 below gives the generic form of the PCM equation for the total system

failure rate [42, 44]. In this equation λSystem is the overall failure rate for the system,

n represents the number of different generic part types, Ni is the quantity of the ith

generic part, λGi is the generic failure rate for the ith generic part, and πQi is the

quality factor for the ith generic part.

λSystem =
n∑
i=1

Ni(λGπQ)i (3)

The PCM approach is very relevant to the problem being addressed within this

thesis due to its simplicity. The parts count method could easily be applied to es-

timate launch vehicle reliability during early design. Although the PCM approach

is applicable during early design and is particularly useful for system architecture

comparisons, the absolute values of the estimates are not very precise [4].

Similar to the Stress-Strength method, the output format of PCM is dependent

upon the approach for generating the model assumptions. If distributions are used for

the input variables the output will be a distribution of the expected system reliability.

Alternatively, if single numbers are used for each input the PCM output will be a

point estimate of the system reliability.

3.2.1.3 Failure Mode and Effect Analysis

Failure Mode and Effect Analysis (FMEA) is a proactive tool for discovering and cor-

recting design deficiencies [176]. It utilizes subject matter expert input and historical

data to identify potential failure modes in a system and to evaluate the potential
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consequences of each. A properly executed FMEA can help to [152]:

• Identify known and potential failure modes

• Identify causes and effects of each failure mode

• Prioritize the identified failure modes according to the risk priority, the product

of frequency of occurrence, severity, and detection

• Provide for problem follow-up and corrective action

An FMEA is typically carried out by a team of engineers that possess the required

knowledge of the system being analyzed. This team will produce the FMEA worksheet

that contains all information that is generated for the identified failure modes. Figure

10 shows an example FMEA worksheet recreated from reference [40].

Identification

Number

Item/Functional 

Identification
Function

Failure Modes 

and Causes

Failure Effects

Failure 

Detection Method

Compensating 

Provisions
Remarks

Local Effects
Next Higher

Level
End Effects

Failure Mode and Effects Analysis

System ____________________

Indenture Level _____________

Reference Drawing __________

Mission  ___________________

Date ____________________

Sheet _______ of  _______

Compiled by _____________

Approved by _____________

Figure 10: Sample FMEA Worksheet

As can be seen in the figure, the FMEA worksheet contains columns for system

function, failure mode, effects of the mode, causes, detection methods, and recom-

mended preventative actions. The FMEA worksheet is typically populated using a

well defined process [40, 172, 176]. The general process is as follows:

1. Define the system to be analyzed

2. Construct a physical or functional block diagram
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3. Identify all potential item and interface failure modes and their effect on the

immediate function or item

4. Evaluate the severity of each failure mode

5. Identify failure mechanisms for each failure mode

6. Identify potential corrective design or actions required to eliminate the failure

or control the risk

7. Document actions taken, improvements, and notes

There are four primary types of FMEA; system, design, process and service [152,

176]. The system FMEA is used to evaluate systems and subsystems during the

design phases. It focuses on potential failure modes between the functions of the

system caused by system deficiencies, and includes interactions between the defined

system elements [152]. The goal of a system FMEA is to rank the list of failure

modes and identify mitigation strategies for each. It is primarily used to analyze

and prevent failures related to technology and system configuration [176]. Since the

system FMEA is typically carried out during very early design, it is sometimes referred

to as a concept FMEA [176].

The second type of FMEA is the design FMEA. A design FMEA is used to analyze

products before they are released to manufacturing [152]. This FMEA is typically

performed as soon as the first version of the design is available [176]. Its primary

purpose is to eliminate or alleviate any critical failure modes that exist within the

design. The design FMEA is thus used to develop production control plans, verifica-

tion, and service strategy. The output from the design FMEA serves as an input to

the following process FMEA.

A process FMEA is used to identify failure modes and assess the risk of failure of

the manufacturing and assembly processes. The process FMEA is typically carried
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out in a series of steps to include labor, machine, method, material, measurement,

and environment considerations [152]. The main purpose of this FMEA is to identify

ways in which the process could fail to meet the requirements and/or design intent

[176]. The output of this FMEA helps to ensure a manufacturing process that is

under tight control and contains a limited number of failure modes.

The fourth type of FMEA is the service FMEA. A service FMEA is used to

analyze services before they reach the customer [152]. This FMEA focuses on failure

modes such as tasks, errors, or mistakes that are caused by process deficiencies. The

service FMEA can aid in identifying monitoring strategies, potential errors, potential

bottlenecks, and critical tasks. Thus the service FMEA helps to analyze work flow

by identifying critical paths.

All four types of FMEA share common benefits. The benefits of applying FMEA

during the design phase of a program can ultimately help to improve the quality,

reliability, and safety of a product or service [152]. First, the FMEA worksheet

provides the designer with an idea of the number of failure modes that are inherent

to a system. In addition, the modes are ranked based on their expected frequency

of occurrence and consequences. These two pieces of information give the designer a

good idea as to the reliability and safety potential of the system being considered. It

also allows the designer to quickly pin-point areas of weakness in the design, which

helps to prioritize any proposed fixes or proactively pursue mitigation techniques.

Although FMEA offers many benefits to a system it has major drawbacks. The

foremost of these drawbacks is the time required to complete the analysis. For a

simple component or element in a system an FMEA can be completed relatively

quickly. However, for a complex system made up of many different components or

elements the process of completing an FMEA can become very time consuming. More

time is required for complex systems primarily due to the amount of detailed system

information that is required. The difficulty in performing FMEA also increases as the
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number of possible operating modes increases, or repair and maintenance is considered

[152]. Due to the time required to complete the analysis, full FMEA is not applicable

for very large trade studies where multiple unique concepts are being considered. The

amount of time and effort required for such a task quickly becomes unmanageable.

3.2.1.4 Preliminary Hazard Analysis

A hazard is defined as a real or potential condition that could lead to an unplanned

event or series of events resulting in death, injury, occupational illness, damage to or

loss of equipment or property, or damage to the environment [45]. Preliminary hazard

analysis (PHA) is a technique that seeks to identify and rank hazards based upon

qualitative measurement of their worst potential consequence [172]. It was originally

developed by the US Army and has been proven effective in identifying hazards in

the beginning of a conceptual design phase [172].

Hazard analysis is similar to FMEA in that it utilizes a worksheet as a primary

guide for carrying out the analysis and storing resulting information. An FMEA

worksheet will contain much of the same information as the hazard analysis worksheet,

but will contain more detail. The FMEA worksheet is more detailed because it seeks

to identify all potential failure modes or events that will lead to a hazardous state.

In a PHA only the hazardous states will be identified, which includes hazards such as

explosions, radioactive sources, pressure vessels or lines, toxic materials, high voltage,

or machinery [45, 172]. For example, consider the design of a new lawn mower. A

preliminary hazard analysis may identify an explosion or release of the mower blades

as a hazard that could cause serious injury. In an FMEA, this hazard is identified by

its underlying causes or failure modes such as; ingestion of an object causing blade

failure, blade fatigue failure, or a blade failure due to material or manufacturing

imperfections.

The preliminary hazard analysis process can be broken into four primary steps
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[172]. The first of these steps is to define the system being analyzed. To complete

this step, the overall system functionality and structure must be defined. The system

structure also leads to the identification of the system boundaries between any systems

with which it interacts and the domain in which it operates [172].

The second step to PHA is identification. The purpose of this step is to create

a detailed list of hazards of the system. This includes the identification of events or

accidents that may occur while the system is in use. The identified events or accidents

are recorded in a hazards list.

The third step of PHA, assignment, begins with the hazards list. In this step,

each event or accident is given a severity categorization and a predicted probability

of occurrence. The assigned probability of occurrence can be developed qualitatively

or quantitatively. Hazards are typically categorized as one of four classes with Class I

being the most benign and Class IV the most threatening. The four classes describe

hazards as negligible, marginal, critical, or catastrophic [172].

The final step of PHA is to document the findings of the analysis. During this step

all the hazards and their accompanying categorizations and probabilities of occurrence

are compiled into the PHA worksheet. In addition, any safety features or measures

that were identified as necessary will be documented in the final report. This step

ensures that the conclusions made during the application of PHA will be implemented

during later phases of development.

Preliminary hazard analysis is a very powerful tool for understanding the hazards

of a system. It is especially effective when applied during the early stages of design.

During early design PHA allows designers to identify potential hazards in the system

and begin to investigate mitigation strategies prior to full scale system development.

This approach is beneficial because it helps to reduce the number of safety measures

or features that need to be added to the system after development.

Preliminary hazard analysis does have limitations, however, which are due in part
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to its qualitative nature. The effectiveness of the PHA is dependent upon the thor-

oughness of the development of the hazard list. It is very possible for designers to

overlook hazards during the identification phase. Using PHA also requires rigor in

the documentation phase, where the results of the analysis must be properly commu-

nicated. If mitigation strategies have been identified through PHA, it is important to

ensure that these strategies are actually employed. The benefits of the PHA can only

be realized if the conclusions of the analysis are put to good use and the identified

hazards are eliminated or mitigated.

3.2.1.5 Fault Tree Analysis

Fault tree analysis (FTA) is a failure oriented technique for calculating the reliability

of a system. It provides a formal method for determination of the combinations of

primary events that result in the occurrence of a specified system-level event [47].

Fault trees were conceived by H.R. Watson, after realizing that logic flow in data

processing equipment could be used for analyzing the logic of system failures resulting

from component failures [47]. The technique was originally applied to the Minuteman

Intercontinental Ballistic Missile, which was eventually rated as one of the safest in

the U.S. Air Force inventory [172].

Fault tree analysis focuses on determining the probability of occurrence of a top

level undesired event. These events generally consist of complete or catastrophic fail-

ures [167]. Examples of some top level events for launch vehicles are loss of mission

(LOM), loss of vehicle (LOV), or loss of crew (LOC). After identifying the top level

events of interest, these events are logically branched into contributing events through

cause-and-effect analysis [176]. Each of the contributing events refers to a possible

cause of the top level event, which have some probability of occurrence. These con-

tributing events, also referred to as faults, are connected to top level or lower level

events via various logic “gates”. The logic gates show the relationships of events

44



www.manaraa.com

needed for the occurrence of a “higher” level event [167]. Inputs to the logic gates

consist of lower level events, while the output signifies the occurrence of the higher

level event [167]. When complete, the fault tree provides a graphical representation

of the interaction of failures and other events in the system [172].

To illustrate the connections between contributing events, gates, and the top event

a simple example is given. The example fault tree was taken from reference [167] and

can be seen in Figure 11. The figure contains a top level event “T”, which is connected

to contributing events “A”, “B”, and “C”. The top level event is connected directly

to an “OR” gate, which has a pointed top and rounded bottom. This OR gate is

connected to event C and intermediate event “A*B”. Thus for the top level event to

occur either event C or event A*B must occur. Event C is referred to as a basic event,

which is symbolized using a circle. Basic events are the lowest level of possible failure

and require no further development [167]. Intermediate event A*B, however, does

require further development and is symbolized with a rectangle. In the figure, event

A*B is connected to an “AND” gate, symbolized with a round top and flat bottom.

This gate is connected to basic events A and B, which means that both must occur

to trigger intermediate event A*B.

Figure 11: Simple Fault Tree

45



www.manaraa.com

In practice fault trees will be much more complicated than what is shown in Figure

11. Many more types of logic gates and events exist for the use in complex fault

trees. Other types of events include house or external events, undeveloped events,

conditioning events, and transfer events [47, 167, 172, 176]. Additional logic gates

include exclusive AND gates, exclusive OR gates, k-out-of-n voting gates, inhibit

gates, and priority gates [47, 167, 172, 176].

It is important to note that a fault tree does not contain all possible system failures

or causes for system failures. The tree is tailored specifically to its top event and thus

will only include faults that contribute to this event [167]. The contributing faults

that are included are also not an exhaustive set. Faults that are included in the tree

are typically limited to those that have been deemed the most credible as assessed by

the analyst [167].

Fault tree analysis provides many benefits to a reliability and safety program.

First, FTA can yield both qualitative and quantitative information. Qualitative in-

formation from FTA includes failure paths, root causes, and weak areas of the system

[176]. In this sense, the creation of the tree gives the analyst a means to review the

design and to better understand functional relationships within the system. Quan-

titative analysis of fault trees gives a probabilistic estimate of the occurrence of the

top event [176]. This probabilistic output can be used by the analyst to identify the

adequacy of the design in terms of expected reliability or safety.

The results of FTA are also useful inputs to the development of verification plans,

maintenance policies, and repair strategies [176]. Fault trees are applicable to many

different types of systems and disciplines and can be applied at varying levels of

fidelity. Thus FTA can also be used in conjunction with other techniques in order to

analyze very complex systems [172].

Shortcomings of FTA are mostly seen when evaluating very large and complex

systems. Creation of a full FTA for a complex system such as a launch vehicle requires
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a vast amount of knowledge about the individual subsystems and components as well

as the operating environment. It is not uncommon for complex fault trees to contain

hundreds of gates and events leading to a single top level event [171]. If the fault tree

becomes very large, the process involved in quantitatively evaluating the top level

event becomes very tedious. Calculations of the probability of occurrence of the top

level event can become very time consuming and difficult to perform.

3.2.1.6 Reliability Block Diagrams

The reliability block diagram (RBD) is a success oriented reliability assessment tech-

nique, which is analogous to FTA. Reliability block diagrams follow the physical

layout of the system using a block representation [88]. Each block represents a com-

ponent in the system that has a certain probability of operating successfully. These

blocks are connected by lines according to their logic relationships [176]. Depend-

ing upon the system the blocks in the diagram will be arranged in parallel, series,

or a combination of the two. Other more complex arrangements are also possible,

including k-out-of-n systems, cold standby, and various switches [176].

After setup, the reliability of the system is calculated using the reliability of each

of the individual blocks. Based upon the set up of the diagram various paths are

available for a “signal” to pass through the logic connections and blocks, typically

from left to right. If a component fails, the signal is not allowed to pass through its

block in the diagram. In the case that all paths are “blocked” by failed components,

the system is said to have failed [95]. A simple example of a block diagram can be

seen in Figure 12 from reference [42].

Figure 12: Simple Reliability Block Diagram
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As can be seen in the figure, the system being represented has six components

labeled “A”, “B”, “C”, “D”, “E”, and “F”. The right hand side of the figure is

labeled success, which refers to the idea that if a “signal” can pass from the left

to the right the system did not fail. In this diagram two parallel paths exist, one

with A, B, and C in series and the other with D and E in series. Both of these

paths then pass to component F, which in this case is critical to the success of the

system. It is clear that if F fails, the path to success is completely cut. To calculate

the system reliability, simple equations can be applied [176]. For blocks in series

the reliability can be calculated by simply multiplying the individual component

reliabilities: Rs =
∏n

i Ri [6]. For components in parallel the equation for reliability

changes to: Rs = 1−
∏n

i (1−Ri) [6].

Although these equations are relatively simple to use, manual calculation can

become very difficult as the system complexity increases. Very complex systems will

often contain combinations of blocks in series, parallel, k-out-of-n, and switching

configurations. For such complex diagrams, simplification methods are needed to

help compute reliability. A few methods for diagram simplification include reduction

method, decomposition method, and minimal cut set method [176].

3.2.1.7 Similarity Method

Similarity method is a very simplistic approach for estimating the reliability of a

new system. Reliability estimates are produced via a comparison between the system

under consideration and a similar system that has undergone field evaluation [42]. If

the new system and the field tested system are deemed similar, then the reliability of

the new system is assumed to be nearly equal to that of the old system. To complete

the prediction for a new system, the data may also be subjectively adjusted upward

or downward based upon the expected complexity of the new system compared to

the old [109].
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The similarity method allows for the designers to rapidly produce reliability esti-

mates as well as identify differences between the new and old designs. These differ-

ences can play a large role in identifying signposts to improvements in the new design

[42]. Although similarity method is rapid and simple to apply, its accuracy depends

heavily upon the validity of the comparison. Prior to comparison, a set of major

factors must be taken into account to ensure the validity. A set of these factors can

be seen in reference [42], which are enumerated below:

1. Item physical and performance comparison

2. Design similarity

3. Manufacturing similarity

4. Similarity of the service use profile (logistic, operational, and environmental)

5. Program and project similarity

6. Proof of reliability achievement

As illustrated by the factors above, care must be taken to ensure the validity

of each system comparison. If the validity of the comparison is in question, the

predicted reliability of the new system must also be in question. In practice, it is

difficult to ensure that each factor is met in a traceable manner. Thus, the validity

of the comparison is typically left to the judgment of a subject matter expert.

3.2.1.8 Markov Chains

Markov chains were first developed based upon the work of A.A. Markov in the early

1900s [7]. Markov’s study of sequences of dependent random variables ultimately

lead to the creation of the term, and field, of Markov chains [7]. A Markov chain is a

global state-space based representation of a system [171]. It consists of two primary

elements, states and transitions. These states and transitions are conceptually simple
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and can be illustrated using graphical or matrix representations. A simple example

of a Markov chain can be seen in Figure 13 below [171].

Figure 13: Simple Markov chain for triple redundant system

Figure 13 contains four states, labeled A, B, C, and F, as well as five transitions

shown as arrows between the states. This example represents a triple redundant

system, which has three identical components that all must fail to cause a system

failure. States A, B, and C represent the system state in which 3, 2, and 1 of the

components are operational, respectively. The transitions from state A to B, B to C,

and C to F represent a component failure assuming failure rate λ. The upper most

transitions utilize a repair rate, µ, that represents the repair of failed components.

The Markov chain operates under the simple assumption that the future state

only depends upon the current state. This is sometimes referred to as the Markov

property [171]. For example, in Figure 13, if the system is in state B it can transition

to either state A or state C no matter if the transition to the current state was from

A or C. From state B the system has a probability of transitioning to state C of 2λ

and a probability of transitioning to A of µ. For this system, the Markov chain can

be represented by the transition matrix Q [171]:

Q =



−3λ µ 0 0

3λ −2λ− µ 2µ 0

0 2λ −λ− 2µ 0

0 0 λ 0


(4)

The matrix Q can be read using the following conventions. Each column in the

matrix represents another state of the system. In this case, column 1 represents state
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A, column 2 is state B and so on. The probabilities found in each column correspond

to the probability that the system will transition into the corresponding state. For

example, in column 1, state A is assumed to be the current state. In row 2 of column

1 the probability of transitioning between the current state A and state B is given.

Utilizing the Q matrix, the probability of the system being in a specific state at a

given step in time can be calculated. This is accomplished using Equation 5 below,

where π1 represents the vector of probabilities of the system state for time step 1 and

π0 is the initial state of the system. The initial state of the system is a simple vector

with a single 1 representing the initial state with all other entries set to 0.

π1 = Qπ0 (5)

Using Equation 5 the probabilities of the system state can be calculated for any

step in time using the vector of probabilities from the previous step in time. Under

some conditions a limit exists, which is called a stationary distribution [171]. In this

case as time becomes large the vector of probabilities will converge to some set of

constant values. After this occurs, the vector of probabilities of being in the various

states will be the same on all subsequent steps [73].

The primary advantage of Markov chains is the ability to model dynamic depen-

dent events. Events such as cold spares or component repairs can be difficult to

represent using RBD or FTA techniques, making it necessary to resort to Markov

chains [169]. Another advantage of Markov chains is their simplicity, both conceptu-

ally and mathematically. The graphical representations of a Markov chain are very

intuitive and easy to understand. Similarly, the calculations required to determine

the probabilities of being in the various states can be performed very rapidly. One

major caveat to these advantages is that they become less typical for very complex

systems.

The reason for this caveat is that a large state-space explosion can occur for

complex systems [169]. This state-space explosion is one of the primary disadvantages
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of the Markov chain. For very complex systems with many different components the

number of states that must be represented increases greatly. The size of the model

can be expected to grow exponentially with the number of modeled components [171].

Another less critical disadvantage of a Markov chain is the inability to model changes

in failure rates over time. The rates defined for the original transitions are always

constant, which for real complex systems may not be the case.

The two disadvantages identified above can only be avoided for complex systems

by applying a different reliability technique. This technique, stochastic Petri nets

(SPN), can be employed as a more compact representation of the system than a

Markov chain [171]. In addition, the use of stochastic Petri nets enables the ability

to change failure rates over time to more accurately represent reality.

3.2.1.9 Stochastic Petri Nets

Stochastic Petri nets (SPN) are based upon Petri net theory, which was developed

from the early work of Carl Adam Petri in the 1960s [130]. Petri net theory is

a graphical method that utilizes a set of basic symbols for describing relationships

between conditions and events [96]. It can be used to model and analyze the dynamic

behavior of complex systems [96]. Such dynamic behavior includes varying failure

rates for system components or the use of cold spares [88].

Petri nets utilize a local state-space representation of the system in order to model

its dynamic behavior. In graphical form a Petri net is comprised simply of places and

transitions [130]. A simple example of a Petri net from reference [170] can be seen in

Figure 14 below. The graphical representation of a Petri net denotes places as circles

and transitions as rectangles. Directed arcs are utilized to link the various places

and transitions together. Each place represents a potential state of the system being

analyzed.

To identify the current state of the system, tokens are used [96]. The place in which
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these tokens reside represents the current state. Under certain conditions, transitions

can be “fired”, which based upon the directed arc connections will remove a token

from a place and move it to another [169]. The firing of a transition corresponds to

the occurrence of a discrete event in the system [169].

Typically, the firing of transitions is controlled using a delay. When a token enters

a place with an arc connected to the input of a transition, the delay is activated.

Deterministic time delays will simply fire the transition after a specified amount

of time. Delays can also be represented using random variables based upon given

distributions [169]. In this case the delay would have a certain probability of firing

at each step in time.

Figure 14: Simple stochastic Petri net [171]

In Figure 14 a simple SPN is given, which contains three spaces and three tran-

sitions. This example represents a system with two redundant components. If both

components fail, the system is assumed to be failed. Two tokens can be seen in the

space labeled “System Ok”, which identifies that both of the components in the sys-

tem being analyzed are currently operating. The bottom most transition links the

“System Ok” space to the “Component Failed” space. This transition represents the

discrete event in which one of the two components fails. Another transition is located

between the “Component Failed” and “System Failed” spaces, which represents the

event in which both components are failed resulting in system failure. The third
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transition, located between the “System Ok” and “System Failed” spaces is used to

represent the change in failure rate of a single component operating by itself. After

one component passes to the “Component Failed” space, this transition is activated.

Upon firing this transition will pass the other non-failed component to the “System

Failed” space, representing a system failure. This change in failure rate is a common

dynamic effect that is easily modeled using SPN.

In order to produce reliability estimates, the SPN utilizes Monte Carlo simulation.

This simulation consists of running the Petri net model many times and counting the

number of times a token enters the failed state. The ratio of Monte Carlo cases in

which a token entered the failed state and the total number of cases will give the

probability of failure for the system.

Stochastic Petri nets are generally desirable for their ability to model systems

with dynamic features [169]. Such features include dependent events and spare mod-

eling. These events can be represented using dynamic fault trees or reliability block

diagrams; however SPN offers a more compact alternative for modeling such systems.

Stochastic Petri nets also benefit from continuing research, which has lead to various

extensions to the SPN formulation [169]. Examples of SPN extensions include col-

ored tokens, aging tokens, marking dependence, and trapezoidal graph representation

[96, 169].

3.2.2 Assertion to Research Question 1

Section 3.2.1 presented an overview of many reliability and safety assessment tech-

niques including FMEA, FTA, RBD, hazard analysis, parts count, similarity method,

stress-strength, and reliability growth. After reviewing the existing techniques an out-

put format for the CONTRAST method can be identified. The desired output format

will provide the designer with enough information to enable differentiation between

unique concepts. Another desired characteristic is the inclusion of some measure
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of the confidence in the resulting estimates. To begin consideration of the output

formats, the methods can first be broken into two groups with FMEA and hazard

analysis representing qualitative methods and FTA, RBD, similarity, parts count,

stress-strength, and reliability growth representing quantitative methods.

The output of the qualitative methods, FMEA and hazard analysis, can be quickly

dismissed due to their subjective rankings. Although these techniques offer strengths

that will be leveraged later on, their output is not desirable for architecture compar-

isons. In order to evaluate many different vehicle concepts an impractical amount of

time would be required to produce these qualitative assessments.

The quantitative methods have three primary types of output; point estimates,

probabilistic estimates, and estimates as a function of time. The first two types of

output can be produced using fault trees, reliability block diagrams, parts count, or

similarity method.

Point estimates are the easiest to produce, requiring only point estimates of prob-

ability for individual blocks or events in RBD or FTA, respectively. Using RBD and

FTA, only one evaluation is required to produce this type of estimate. Similarity

methods also easily produce point estimates and, in the simplest form, only need to

multiply each subsystem’s reliability value to produce a system level value.

Probabilistic estimates can be produced via RBD, FTA, and similarity by using

probability distributions for the subsystems, blocks, or events in the analysis. Utiliz-

ing these distributions, a Monte Carlo simulation can be performed, which produces

the system level probability distribution. As discussed in the literature review, this

distribution for a launch vehicle typically refers to the probability of loss of mission,

loss of vehicle, or loss of crew. Depending upon the input distributions, the system

level distribution will represent the reliability or safety of the vehicle at a specific

point in time during its life-cycle.

The final type of quantitative output is the estimate as a function of time. With

55



www.manaraa.com

very special application these estimates could be produced using FTA or RBD. How-

ever, they are generally produced using reliability growth methods. Although many

different techniques exist for producing growth curves the basic premise is the same.

As a system matures through testing and operations, faults and deficiencies in the

system will surface and be corrected. Ultimately, as these faults are corrected, they

are eliminated from the system, leaving it more reliable for the next test or launch.

Using this logic, each reliability growth method will produce an estimated path of

reliability from the beginning of the program to vehicle maturity. For launch vehicles

time will typically be represented using equivalent number of launches.

In examining the three types of quantitative outputs, the first type can be im-

mediately eliminated from consideration. Although point estimates are the easiest

to produce, the accuracy of these estimates during early design is not sufficient.

Therefore the confidence in each point estimate, and ultimately the confidence in the

ranking of alternatives are very low.

This leads to the second output type, which allows for the evaluation of the con-

fidence in each estimate. Probability distributions allow the analyst to assess the

confidence level on the estimate for vehicle reliability and safety. It also allows the

analyst to evaluate the probability of reaching the reliability and safety goals for the

vehicle. Although the probabilistic output is desired over the point estimates, short-

comings in this approach were identified in Section 2.3. Ultimately, the probabilistic

outputs lack the ability to fully evaluate the probability that a vehicle will reach its

reliability and safety goals. This shortcoming stems directly from the lack of inclusion

of time in the output.

Following the previous arguments, a logical conclusion can be made that estimates

as a function of time are the best suited to early design. This format gives the analyst

not only an idea of the confidence in the estimates but also allows them to compare the

expected reliability growth in each vehicle. Depending upon the architecture of each
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concept, the reliability growth curve can change in many different ways. Any changes

in these curves will help the analyst make a more informed decision as to which

architecture is expected to produce the highest reliability and safety. The decision

will ultimately be based on more information such as; initial reliability, expected

reliability at first operational flight, mature reliability, number of flights to minimum

required reliability, and number of flights to maturity. From these arguments an

assertion to research question 1 was produced.

Assertion to Research Question 1

Reliability estimates as a function of time are the most desirable for

comparison of launch vehicle concepts during early design because

they provide more information than point or probabilistic estimates.

3.3 Research Question 2: Reliability Growth Model Type

Problem 
Definition

Reliability and 
Safety Analysis

Architecture 
Comparison

Now that reliability estimates as a function of time have been identified as the desired

output, options for producing this output must be explored. The method development

will therefore begin to address the second generic step, Reliability and Safety Analysis.

In Section 3.2.1, many current reliability techniques for early design were reviewed.

Of these techniques, only one is well suited for producing reliability estimates as a

function of time: reliability growth methods. Since many reliability growth methods

already exist they will serve as the logical starting point for determining how to

produce the desired output. Research question 2 addresses the selection of a reliability

growth model for application during conceptual design.
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Research Question 2

What type of reliability growth model is most appropriate for

producing estimates during early conceptual design?

To address research question 2, a review of existing reliability growth models

must be performed. This review will determine the growth models that are most

appropriate for application in early design of launch vehicles. The following section

gives an overview of the three basic types of growth models. From these types a

specific category is identified as appropriate for application to launch vehicle problems,

which results in a detailed review of 5 different reliability growth models.

3.3.1 Reliability Growth Methods

Reliability growth methods operate with the simple assumption that as defects and

faults are eliminated from a system, the system will inherently become more reliable.

The idea of reliability growth can be traced back to the writings of Benjamin Gom-

pertz, who used a learning curve type approach to evaluate human life expectancy

[72]. Since that time, reliability growth has been observed in many types of complex

systems including launch vehicles [61, 108].

Reliability growth methods fall into three primary categories; planning, tracking,

and projection [77]. The planning and tracking categories are typically used during

the primary testing phases of a program. These allow the program managers to

set the reliability targets and schedule for the proposed test plan [77]. As the test

program is carried out, reliability growth tracking methods can be used to measure

the progress of the system. Reliability growth tracking methods give the managers

an idea of how well, or poorly, the test program is progressing, which helps ensure

that the system meets the reliability targets in a timely manner. The third category
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of reliability growth method is projection. Reliability growth projection methods are

used to generate forecasts of system reliability over time. These methods allow the

program managers to evaluate the expected reliability of the system and predict how

long it may take for the system to reach maturity.

All three categories of growth methods will also have either a discrete or continuous

formulation. Continuous growth methods track reliability in terms of total operation

time, typically in hours or seconds. These methods utilized mean time between failure

data to estimate the reliability of the system over time. Continuous reliability growth

methods are applicable for systems in which repairs are possible, or very long duration

testing can be performed.

In the discrete case, the growth models are formulated to measure time in terms

of number of trials or tests. These models are applicable to “one-shot” systems such

as missiles, torpedoes, or smart munitions [66, 75]. The discrete formulation of the

model assumes that each trial results in a discrete success or failure event [66]. Thus

for discrete growth models, time to failure is not tracked as it is in the continuous

models.

A significant amount of literature exists on both the discrete and continuous side

of reliability growth planning, tracking, and projection. In Table 1 a list of growth

models for each different type is given. The models have been sub-divided into the

planning, tracking, and projection types and then split into either continuous or

discrete. It is important to note, however, that not all of the models listed in Table

1 are applicable to the launch vehicle problem being considered in this thesis. Due

to the fact that launch vehicles are considered as “one-shot” systems, a discrete

growth model is most appropriate. In addition, this thesis is addressing the prediction

of launch vehicle reliability during early conceptual design, which corresponds to

the projection type growth models. For this reason, the reliability growth methods

reviewed in this section will only include the discrete projection type models. As seen
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in Table 1 these models include AMSAA-Crow, Hall, and Morse. Two other discrete

models will be added to the review, Fries and Finkelstein, which can be seen in the

discrete planning and tracking lists. The primary use of these models is for planning

and tracking reliability growth, however, with special application they can be applied

for projection.

Table 1: Existing Reliability Growth Models

Model Type Continuous Discrete

Planning AMSAA-PM2 [164]

Duane [48]

MIL-HDBK-189 [41]

Selby-Miller [149]

AMSAA-PM2 [164]

Finkelstein [57]

Fries [66]

Tracking AMSAA-RGTMC [164]

Duane [48]

Finkelstein [57]

Fries [66]

Projection AMSAA-Crow [35]

AMPM-Stein [51]

Corcoran [31]

Crow Extended [37]

Ellner-Wald AMPM [52]

AMSAA-Crow [36]

Hall [75, 76]

Morse [108]

3.3.1.1 AMSAA-Crow Growth Model

The derivation of the AMSAA-Crow model can be traced back to the learning-curve

type approach taken by Duane in his well-known continuous reliability growth model

[65]. The Duane model is based upon an observed relationship between empirical

failure data for a variety of different complex systems [65]. By plotting failure data

on a log-log scale over cumulative test time, Duane observed that the cumulative

failure rate decreased nearly linearly [48]. From this observation, Duane introduced

an approximate functional relationship between the expected cumulative number of
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observed failures and the cumulative test time [48, 66]. This relationship can be

written, E{K(T )} = λT β, where β and λ are scale and shape parameters, T is the

cumulative test time, and K(T) denotes the cumulative number of observed failures

[66].

To derive a discrete version of this model a reformulation can be used in which the

cumulative test time is simply replaced by the trial number. Using this reformulation,

Crow derived the AMSAA-Crow model:

Ri = 1− λ[(Ti)
β − (Ti−1)

β]/Ni (6)

Where, T is the trial number, N is the number of trials per test configuration, λ

represents the reliability of the initial configuration, and (1 − β) is the growth pa-

rameter. The configuration number, i, is assumed to change whenever design changes

have occurred. These design changes are made in direct response to observed failures.

There are two primary assumptions used during the derivation of the AMSAA-

Crow model [66]. These assumptions are enumerated below.

1. The number of trials per test configuration is fixed in advance

2. The number of failures per test configuration is unknown before testing on that

configuration is initiated

The first assumption implies that the number of trials does not depend on the

test outcomes. In this case, testing will not be halted if a failure is experienced. Due

to the fact that testing is not halted after a single failure, the second assumption

follows logically as it is unknown how many times the system will fail throughout

testing. Together these assumptions correspond to a case in which a batch of systems

is delivered for testing, all of the systems are tested, and the results are then used to

make design changes. If design changes are made a new batch of systems, representing

a new configuration number, would be tested. Note that with the AMSAA-Crow
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formulation, the next batch of test articles does not need to be of the same number

as the previous. An adjustment of this assumption was used by Finkelstein to derive

a similar discrete growth model [66].

3.3.1.2 Finkelstein Growth Model

The Finkelstein growth model can be described as a special case of the AMSAA-Crow

model in which the number of trials for each test configuration is constant [66]. In

the case where Ni = N , the reliability growth model can be reduced to:

Ri = 1− λNβ−1[(i)β − (i− 1)β] (7)

Where i is the configuration number, N is the number of trials per test configuration,

λ represents the reliability of the initial configuration, and (1 − β) is the growth

parameter. As with the AMSAA-Crow model, the configuration is assumed to change

when design fixes are implemented to eliminate specific observed failures.

The two primary assumptions for the AMSAA-Crow model also hold for the

Finkelstein model, with one minor adjustment. The second assumption remains un-

changed, which refers to the number of failures per test configuration being unknown

before testing is initiated. The first assumption varies slightly due to the special

case that was used to derive the Finkelstein model. The first assumption states that

the number of trials per test for each configuration is fixed. For the AMSAA-Crow

model this number is fixed for each configuration but can vary between configura-

tions. The Finkelstein model, however, assumes that this number is constant for all

configurations.

Due to this assumption, the Finkelstein model is a special case of the AMSAA-

Crow model, Ni = N . This conclusion means that the two models are nearly identical

with their only variation being in the assumed test strategy. The AMSAA-Crow

test strategy allows for changes in the number of tests after a configuration change,

while the Finkelstein model assumes no change in number of tests. In order to more
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accurately reflect the test strategy for expensive one-shot systems, Fries offers an

alternative derivation in reference [66].

3.3.1.3 Fries Growth Model

The Fries growth model was derived as a discrete learning-curve based reliability

growth model [66]. As discussed above this model is very similar to the AMSAA-

Crow and Finkelstein models. The primary difference lies in the assumed test strategy.

Fries derived primary assumptions based upon a test strategy for destructive testing

of very expensive one-shot systems [66]. In this case, testing is halted after any failure

has occurred and design fixes are implemented before testing continues. With this

assumption, the results for each test configuration consist of a string of successes,

possibly zero, followed by a single failure [66]. This single failure then results in a

change in design configuration. The adjustments made by Fries to the assumed test

strategy results in two primary assumptions for the model, which are enumerated

below.

1. The number of trials per test configuration is unknown before testing on that

configuration is initiated

2. The number of failures per test configuration is fixed at one

The first assumption stems from the test results consisting of a run of successes

prior to a failure. The trial at which the failure occurs is unknown, therefore the

total number of trials for the configuration is unknown. After a single failure is

experienced the testing is halted and a design correction is sought. This leads to the

second assumption, which makes intuitive sense for destructive testing of expensive

systems. After a single failure, testing will be halted in order to avoid excessive cost

commitment to testing a configuration that will be changed at the end of the test

phase anyways.
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Using these two assumptions, Fries derived a new expression for system reliability:

Ri = 1− λ[(i)β − (i− 1)β]−1 (8)

Where i is the configuration number and β and λ are parameters of the learning curve

property. As Equation 7 and Equation 8 illustrate, the Finkelstein and Fries models

are very similar with the primary difference being the removal of the number of trials

from the expression for reliability.

3.3.1.4 Morse Growth Model

The Morse reliability growth model was developed as a practical method for gener-

ating growth forecasts for new systems in the space industry [108]. The intent of the

model is to clearly identify and quantify the primary drivers of reliability to yield a

model that is mathematically sound and directly amenable to systems engineering

inputs [108]. The Morse model was derived as a discrete reliability growth model,

which projects vehicle reliability versus number of flights. It also utilizes three fun-

damental assumptions in regard to defect handling and system configuration. The

three primary assumptions used for deriving the Morse model are enumerated below.

1. Any mission failure, or any anomaly recognized as having a significant potential

to cause mission failure, will result in the application of all practical attempts

at eliminating the source of failure before the next flight

2. A new system is manufactured for every flight; there is no wear-out effect with

increasing flight number

3. The system design and processes (manufacturing, operations) are changed only

for the purpose of increasing reliability

Using these three primary assumptions, Morse represents the primary drivers of

reliability growth as a set of probabilities. These probabilities include; the probability
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of defect trigger, conditional probability of defect detection if triggered, conditional

probability of proper characterization of the defect given detection, and the condi-

tional probability that the defect is eliminated from the system given it was detected

and characterized. In Figure 15, a diagram of the Morse model is shown.

This diagram illustrates the linkage between each of the model parameters, which

are the probabilities noted in green. The diagram also includes a conditional proba-

bility of failure isolation given a defect trigger, as well as a conditional probability of

crew escape given a loss of mission event. The addition of the crew escape probability

is only necessary for launch vehicles in manned configuration.

From Figure 15 a list of parameters for the Morse model can be created. These

parameters, shown in Table 2, are used to develop a mathematical expression for

expected vehicle reliability at flight N. In all, Morse utilizes seven different parameters

in the growth model. It is important to note that Morse’s formulation also allows for

the inclusion of different defect types, which gives the ability to model severe defects

and minor defects individually. In the case where multiple defect types are included,

the defect type is represented by the index k.

Figure 15: Diagram of Morse Reliability Growth Method [108]
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Table 2: Morse reliability growth model parameters

Parameter Definition

dk Initial number of defects of type k

pmin Minimum probability of failure

λk Probability of defect trigger

τk Given defect trigger, conditional probability of LOV

νk Given anomaly, probability that it is observable

φk Given observable, probability that anomaly is noticed and reported

γk Given reported, probability that defect is eliminated

The derivation of the Morse model, utilizing the parameters from Table 2 is as

follows. First, the probability that a defect is still present at flight N is calculated:

δk(N) = [1− pk(γk + αk)]
N−1 (9)

Where pk is the probability of system failure for the given defect and αk is a measure

of the potential to eliminate a defect before it causes loss of vehicle:

pk = λkτk (10)

αk = (ηk − 1)ρk (11)

The parameters ηk and ρk are the mean number of defect triggers to cause LOM

and the conditional probability to eliminate a defect after causing a partial anomaly,

respectively.

ηk = 1/τk (12)

ρk = νkφkγk (13)

With all the parameters now known, the reliability of the entire system at cycle N is:

R(N) = (1− pmin)
D∏
k=i

[1− δk(N)pk]
dk (14)
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Using Equation 14, the Morse model can be applied to project the reliability of a

launch vehicle. The projection requires assumptions for the seven primary parameters

from Table 2 as well as an assumed number of trials, flights, cycles, etc.

3.3.1.5 Hall Growth Model

The Hall reliability growth model is a discrete model for one-shot systems, which is

derived in references [76] and [77]. Hall indicated that the area of discrete reliabil-

ity growth projection was underdeveloped, which motivated the derivation of a new

model [76]. The derivation of the model follows five primary assumptions, which are

enumerated below.

1. A trial results in a dichotomous success/failure outcome such that Ni,j ∼

Bernoulli(pi) for each failure mode i = 1, ..., k and trial j = 1, ..., T

2. The distribution of the number of failures in T trials for each failure mode is

binomial

3. Initial failure mode probabilities of occurrence p1, ..., pk constitute a realization

of an s-random sample Pi, ..., Pk such that Pi ∼ Beta(n, x) for each i = 1, ..., k

4. Potential failure modes occur s-independently of one another and their occur-

rence is considered to constitute a failure

5. There is at least one repeat failure mode

In examining the Hall model assumptions, a set of four primary parameters can

be identified. The first of these parameters stems from assumptions 1 and 3, which

is the number of failure modes, k. This parameter represents the inherent number of

failure modes that exist in the system. The second parameter stems from assumption

1, which is the number of trials during the test phase, T. For application to a launch

vehicle, this parameter would represent the equivalent number of flights. Finally,
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assumption 3 states that the initial probabilities of failure for each failure mode are

random samples from a Beta distribution. This implies that the two scale and shape

parameters of the distribution are also primary model parameters.

Using the four identified parameters Hall first evaluates an indicator function,

which is nothing more than a history of occurrences of all the failure modes. The

indicator function can be evaluated by treating each step in time as an independent

Bernoulli trial with probability of failure equal to the probability of occurrence for

each failure mode. The indicator function, Ii(t) can be written:

Ii(t) =


1 if failure mode i is observed on or before trial t

0 otherwise

(15)

From the indicator function the model of reliability at trial t can be logically

derived. The resulting reliability estimate at trial t can be written:

r(t|~p) ≡
k∏
i=1

(1− [1− Ii(t− 1) ∗ di] ∗ pi) (16)

Where Ii is the indicator function from Equation 15, pi is the probability of occurrence

for failure mode i, and di is the fix effectiveness factor (FEF) for failure mode i.

Equation 16 introduces a new variable into the Hall model, the FEF. The FEF

is a representation of the expected percent reduction in the probability of occurrence

of a failure mode after corrective action has been taken. An FEF of 1 implies that a

failure mode will be completely eliminated from the system if encountered. On the

opposite end of the spectrum, an FEF of 0 implies that no corrective action will be

taken if the failure mode is experienced.

To evaluate the FEF for each failure mode Hall utilizes another Beta random

variable. This requires the addition of two parameters, which are the scale and shape

parameters of the FEF Beta distribution. The resulting Hall model can be applied

using Equation 16 along with assumptions for the number of failure modes, scale and

68



www.manaraa.com

shape parameters for the distribution of probabilities of occurrence, and the scale and

shape parameters for the FEFs.

3.3.2 Hypothesis 2

The previous section presented a detailed description of five growth methods that

were deemed applicable during conceptual design of launch vehicles. This discussion

illustrates that all of the models utilize different assumptions in order to capture the

growth trends. Therefore to form a hypothesis to research question 2, the generation

of these assumptions is a primary consideration.

The first three models discussed in Section 3.3.1, AMSAA-Crow, Finkelstein, and

Fries are very similar in their assumptions. All of these models utilize a growth

parameter, which is derived using reliability data from a “surrogate” system. The

AMSAA-Crow and Finkelstein models have additional parameters relating to the test

program that the vehicle will go through during development. These assumptions

include the number of test configurations and the number of trials per configuration.

The last two models, Hall and Morse, utilize different assumptions regarding the

number of failure modes inherent to the system. The Hall model includes parameters

for the number of failure modes, probability of occurrence of the modes, and fix

effectiveness. The Morse model also includes a parameter for the number of failure

modes, but takes a different approach than Hall. This approach requires parameters

for probabilities of occurrence, detection, action, and correction.

In order to identify the most appropriate reliability growth method two motivating

questions can be posed. The first question asks, what vehicle information is available

during conceptual design? The design information is an important consideration

because it will have a large impact on the traceability and accuracy of the resulting

reliability estimate. Therefore, it will be important to select a growth method that

contains assumptions that can be made during conceptual design. The available
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design information and its implications on the appropriate growth model are discussed

in Section 3.3.2.1.

The second motivating question asks, how can a reliability estimate be produced

using such little information? This question is relevant to the selection of a specific

growth model because it will help identify which pieces of information are vital to

reliability prediction. This information may or may not be represented in the various

growth model assumptions, which will have an effect on the validity of the final results.

This question will be addressed in Section 3.3.2.2.

3.3.2.1 Information Available during Conceptual Design

To begin the discussion of conceptual design information, recall the three categories

of drivers of launch vehicle reliability discussed in Chapter 1. The three categories

of drivers are vehicle architecture, programmatic environment, and operating envi-

ronment. Each of these categories represents a set of design parameters, vehicle

attributes, or program details that all affect the reliability of the system. As the ve-

hicle progresses through its life-cycle more information about each category becomes

known, which allows for more accurate estimation of reliability.

The first category, vehicle architecture, refers to the physical description of the sys-

tem. This category includes parameters such as number of engines, number of stages,

engine cycle type, etc. The vehicle architecture category also includes any interac-

tion effects that may occur between parts, components, assemblies, and subsystems.

During conceptual design a fairly basic representation of the vehicle is available. This

representation may include general descriptions of the vehicle subsystems along with

some basic interactions or relationships between them.

The programmatic environment category is typically the least developed during

conceptual design. This category includes items such as test planning, decision mak-

ing, management style, and developer experience. During conceptual design it is very
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difficult to characterize the effects of management style or decision making on vehicle

reliability during operations. This is primarily due to the fact that it is impossible to

anticipate all of the major decision points that may arise throughout the program. In

addition, the details of the development and test program will not be known. Other

considerations such as the probability of defect introduction during manufacturing

or integration are also nearly impossible to quantify during early design. For this

reason, the programmatic environment category plays little to no role in reliability

estimation during conceptual design.

The final category, operating environment, represents the operating conditions

experienced by the vehicle. This category also includes the interactions between

the system and the surrounding environment. During conceptual design, trajectory

tools can be used to derive the basic loading conditions experienced by the vehicle.

However, it is much more difficult to characterize the interactions that may occur

between the vehicle and the environment. A description of the operating environment

during conceptual design may only include basic information such as max dynamic

pressure and max acceleration.

After considering the information available during conceptual design, two of the

five identified growth models can be eliminated from consideration. The elimination of

the AMSAA-Crow and Finkelstein models stems directly from the lack of knowledge

in the programmatic category, which is the least developed during conceptual design.

Due to the fact that the AMSAA-Crow and Finkelstein models rely upon assumptions

related to test planning, it is difficult to believe that their assumptions can be made

during early design. Specifically, the parameters for number of configurations and

number of trials per configuration will not be known for the system and will be

difficult to estimate. The only way to estimate these parameters is to compare the

new vehicle to a previous vehicle, which was most likely developed under different

leadership, budget, and schedule. Even if the previous vehicle was developed under
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the same circumstances, any changes in leadership, budget, or schedule would require

adjustment to the model parameters, which cannot be anticipated during conceptual

design.

It is important to note that the third model, Fries, also contains a parameter

for the number of vehicle configurations. However, an argument can be made for

this parameter to be substituted with the number of equivalent flights. The Fries

model assumes that only one failure is experienced per test configuration, which

means that the number of trials per configuration is unknown. In this case, the

configuration number can simply be incremented based upon whether or not the

system was assumed to fail. This can be done by taking a random draw using the

current reliability value for the system. Performing such a draw eliminates the need

for the assumptions that are otherwise required in the AMSAA-Crow and Finkelstein

models.

3.3.2.2 Conceptual Reliability Estimation

After discussing the availability of information during conceptual design, it is im-

portant to look at how this information can be used to generate a basic reliability

estimate. A simple example will be presented in this section using Stress-Strength

interference theory, which will lead to observations related to the desired parameters

for the selected growth method. Stress-Strength theory was presented in more detail

in Section 3.2.1.1.

For the conceptual reliability estimation example, consider a simple component

consisting of a bar rigidly attached to a ceiling holding a load, P. An illustration of

the component can be seen in Figure 16.
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P

A

Figure 16: Bar component rigidly attached to ceiling

The only failure mode for this case is the yielding of the bar material under the

applied load. This situation occurs when the applied stress is greater than the yield

strength of the material. For this example, assume that both the yield strength of the

material and the cross-sectional area of the bar are normally distributed. In addition,

the applied load will be normally distributed. From [46] the equation for component

reliability from Stress-Strength theory can be written:

Rc =

∫ ∞
−∞

fstress(s)

[∫ ∞
s

fstrength(S)dS

]
ds (17)

where s is the applied stress, and the applied load, P, and the bar cross-sectional area

are normally distributed:

s = P/A (18)

P ∼ N(µp, σp) (19)

A ∼ N(µa, σa) (20)

The material strength, S, is also normally distributed with a pdf:

f(S) =
1

σm
√

2π
e

−(S−µm)2

2σ2m (21)

In order to calculate the reliability of the component using the above equations,

three parts of information are needed. The first is an estimate of the load that will

be applied to the bar. This estimate may be a uniform distribution if the bar is to
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be used as a generic hanger, or a very tight normal distribution if the bar is intended

for one load case only. The load information will define the mean (µp) and variance

(σp) of the applied load, P.

Next, manufacturing tolerances for production of the bar are needed to define the

cross-sectional area. The manufacturing technique used to fabricate the bar will have

an effect on the tolerance of the bar dimensions. Ultimately these tolerances will

define the mean (µa) and variance (σa) of the bar area, A, which will have an effect

on the applied stress. The final piece of information is in regard to the bar material.

Through materials testing the material yield strength can be assessed, giving the

mean and variance seen in Equation 21.

It is important to note that some of this information may not be available during

conceptual design of the component. For example, the manufacturing technique that

will be used to fabricate the bar may not be identified early in the design process.

In this example problem the lack of information is not an issue because there are

very few parameters that define the stress and strength of the component. However,

in the case of a large complex system, many parameters with large uncertainty will

lead to either a result with high uncertainty, or the inability to produce a result

altogether. This is part of the reason why producing accurate reliability estimates

during conceptual design is very difficult. As this example problem will illustrate,

however, it is possible to reduce the number of parameters required to produce the

reliability estimate.

To complete the reliability calculation for the bar example, values were assigned

to all of the stress and strength parameters. These parameters can be found in

Table 3 below. Using the parameters from the table the applied stress distribution

can be approximated numerically. Figure 17 below shows the strength and stress

distributions for the bar problem. The distribution on the left displays the applied

stress while the right shows the yield strength.
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Table 3: Stress-Strength Parameters for a simple bar component

Parameter Value

µp 4,250 lbs

σp 250 lbs

µa 0.5 in

σa 0.0025 in

µm 10,000 psi

σm 10 psi

8600

8800

9000

9200

9400
9600

9800

10000

10200

10400

10600

9860

9880

9900

9920

9940

9960

9980

10000

10020

10040

Figure 17: Distributions for applied stress (left) and yield strength (right)

Now that the stress and strength distributions have been defined, the reliability

of the component can be calculated, which yields Rc ≈ 0.9989. Since the reliability

of the component is now known and the component only has a single failure mode,

the probability of occurrence of that mode can be written as Pf ≈ 0.0011.

Next, consider the case where an additional failure mode is introduced into the

component. In this case the bar is now attached to the ceiling using an adhesive

with the yield strength, SA. This yield strength will be assumed to be a function

of the ambient temperature, T. It can also be assumed that the adhesive failure
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mode and the bar material failure mode are independent. This assumption is valid

because one failure mode does not cause the other and a case where both modes occur

simultaneously is not expected.

In order to calculate the reliability of the component in this situation the original

six parameters are needed along with three new ones for the second failure mode. The

three new parameters are the mean (µT ) and variance (σT ) of the ambient temperature

and the relationship between the adhesive yield strength and temperature.

The ambient temperature parameters can come from local weather history if the

final operating location of the component is known. If this location will be random or

is unknown, then a fairly large spread of temperatures will need to be considered. For

this example, let us assume the component is used in a climate where the temperature

is relatively stable with a mean of 80 degrees and a variance of 5 degrees.

The relationship between the adhesive strength and ambient temperature is more

difficult to derive. If this component were being developed the relationship could

most likely be derived by directly testing the yield strength of the adhesive at various

temperatures. For the example problem, a simple quadratic relationship will be

assumed, which can be written as: SA = Smax − 1
4
T 2, where Smax is the maximum

yield strength of the adhesive.

Using the new parameters the reliability for the adhesive can be solved for numeri-

cally. The resulting reliability of the adhesive is Rad ≈ 0.9982, with the probability of

occurrence of this mode being Pfad ≈ 0.0018. After calculating the reliability for the

new mode, the overall component reliability can be calculated as Rc ∗Rad ≈ 0.9971.

At this point, an important observation can be noted. To generate the reliability

value for the component assumptions, nine different parameters were needed. How-

ever, the reliability could have been calculated in alternative fashion using the number
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of failure modes multiplied by the probability of failure mode occurrence:

Rc =
N∏
i=1

(1− Pfi) (22)

where N is the number of failure modes and Pfi is the probability of occurrence of

failure mode i. This alternative approach would produce a reliability estimate for the

component that requires only two parameters instead of nine. To produce a reliability

estimate for the component using Equation 22 all that is needed is an estimate for the

probability of occurrence of the two failure modes. The second parameter, number

of failure modes, is easy to quantify for the example problem because there are only

two modes. Therefore, there is no uncertainty in this parameter. The equation for

the reliability of the bar with two failure modes becomes:

Rc = (1− Pf1) ∗ (1− Pf2) (23)

where Pf1 is the probability of occurrence of the bar material failure and Pf2 is the

probability of failure for the adhesive. Without knowing details in regard to the

operating environment, material properties, or adhesive strength vs. temperature

relationship the component reliability can now be calculated by applying distributions

for the probabilities of occurrence.

The reduction in the parameters required for reliability estimation is especially

relevant to the launch vehicle problem being addressed in this dissertation. As was

discussed in Section 3.3.2.1 there is very little information available during conceptual

design. This lack of information may make it difficult to estimate parameters such

as manufacturing tolerance or ambient temperature. Therefore, it would be desirable

to select a growth model for application to the launch vehicle problem that shares

similar assumptions.

The simple bar problem illustrates how the detailed reliability analysis can be

simplified into a number of failure modes approach, which is actually reflected in a

few of the growth models. The Hall and Morse models specifically, utilize the same
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approach as in Equation 22 with one or more additional parameters. After carrying

out the bar example these growth models become much more attractive especially in

comparison to the third model under consideration, Fries.

The bar problem traces the number of failure modes and probability of occurrence

assumptions back to a more detailed reliability analysis. However, parameters such as

the growth parameter found in the Fries model are much more ambiguous in nature.

This growth parameter cannot be traced back to the more detailed reliability analysis.

For this reason, the Fries model can be eliminated from consideration. The Hall

and Morse models are now the primary options for application in the CONTRAST

method.

3.3.2.3 Growth Model Selection

After narrowing down the reliability growth options to the Hall and Morse models,

one must be selected for application in the CONTRAST method. Throughout the dis-

cussion of design information and conceptual reliability estimation in Section 3.3.2.1

and Section 3.3.2.2 two criteria for selecting a model became apparent. These criteria

are the accuracy of the model estimates and the traceability of the model parameters.

Ultimately, the traceability of the model parameters is the most important criteria

for selection because its inherent effect on the accuracy of the output. In addition,

traceable assumptions will allow for more transparency during the reliability assess-

ment as well as more confidence in the final result. To develop hypothesis 2, the

traceability of the two remaining growth models was considered.

The first growth model option is the Hall model, which was discussed in detail in

Section 3.3.1.5. The Hall model utilizes a number of failure modes approach similar

to what was shown in Section 3.3.2.2 for the bar example problem. The Hall model

introduces one more parameter, called the fix effectiveness factor, in addition to the

number of failure modes and the probability of occurrence. The fix effectiveness factor
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represents the percent reduction in the probability of occurrence of a failure mode

given that the mode occurred and a fix was implemented.

All of the parameters within the Hall model can be estimated in a traceable

manner. The number of failure modes inherent to a system can be estimated using

techniques such as FMEA or PCM, while the probabilities of occurrence can be esti-

mated using historical failure data. The fix effectiveness factors are the least traceable

of the Hall model parameters. This is due to the fact that the amount of reduction

of the probability of occurrence may not be directly calculable from historical data.

However, this parameter can still be estimated via a review of documents pertaining

to failure reporting and correction from previous programs. Due to the fact that the

Hall model relies on three parameters that can be derived in a traceable manner, it

is considered to be a more desirable option than the Morse model.

The second option, the Morse model, was discussed in detail in Section 3.3.1.4.

The Morse model utilizes various probabilities associated with failure mode trigger,

observation, reporting, and correction. Two of these assumptions, the number of

failure modes and the probability of failure mode trigger are directly in line with

the bar example problem from Section 3.3.2.2. The addition of other parameters,

however, results in a rather large number of assumptions that must be input into the

model. In all there are 7 parameters of the Morse model that require assumptions.

These parameters are tabulated in Table 2 in Section 3.3.1.4.

The high number of assumptions required by the Morse model is detrimental

when considering traceability. Although the parameters used in the Morse model

make logical sense and play a large part in the reliability growth of real systems, they

are very difficult to estimate. For example, one of the model parameters refers to the

probability that an anomaly is detected during the flight given that an anomaly has

occurred. Obviously for corrective actions to be taken and reliability growth to occur

the anomaly must be detected during the flight. However determining the probability
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that an anomaly is detected requires knowledge of the number of anomalies that were

not detected. This information is truly unknown, and it is very apparent that having

an accurate estimate of this number is non-sensical. Due to the inability to accurately

assess the Morse model assumptions it is considered to be the worse than the Hall

model in terms of traceability of assumptions.

Hypothesis 2 states that the Hall model will be more desirable for application in

the proposed approach based upon a consideration of the traceability of the model

assumptions. This hypothesis will be tested by Experiment 1 in the following section.

Hypothesis 2

If the Hall growth model is applied, the output reliability estimates

will have greater accuracy while utilizing more traceable assumptions

than the AMSAA-Crow, Finkelstein, Fries, or Morse growth models.

3.4 Experiment 1

After developing hypothesis 2 in the previous section a test is needed to substantiate

the hypothesis. In order to test the hypothesis, Experiment 1 will address two primary

considerations for the growth model. First, the traceability of the model parameters

is of utmost importance to the method. Utilizing a model with traceable parameters

will provide the designer with a more defensible reliability output. Additionally,

traceable parameters will allow for a more accurate reliability prediction, which is

another primary consideration in selecting a growth model. The goal of Experiment

1 is therefore to further assess the assumption traceability as well as test the model

prediction accuracies.
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3.4.1 Experimental Setup

Experiment 1 will test the Hall and Morse models by considering the traceability of

their assumptions and the accuracy of their reliability estimates. In order to consider

traceability, a qualitative assessment will be presented. This assessment will be based

on the detailed descriptions of the models given in Section 3.3.1.4 and Section 3.3.1.5.

To assess the accuracy of the reliability estimates a quantitative experiment can

be carried out. In order to make a quantitative assessment of the model accuracy,

reliability data from previous vehicles will be required. Reliability predictions for

these previous vehicles will be produced using each model and the results will be

compared to the historical data.

3.4.1.1 Traceability of Model Assumptions

The traceability of the Morse and Hall models was discussed very briefly in Section

3.3.2.3. In this section all of the parameters for both models will be discussed in more

detail. After assessing these parameters conclusions will be made as to which growth

model can be considered as more traceable.

The first model to be discussed is the Morse model. In Section 3.3.1.4 seven model

assumptions were identified, which were tabulated in Table 2. The first parameter to

discuss is the initial number of defects, dk. This parameter is equivalent to the number

of failure modes assumption found in the Hall model. As discussed in Section 3.9 this

assumption can be produced using multiple different approaches. If the vehicle being

considered is similar to a previous vehicle, failure data or detailed design information

from the previous vehicle can be used to generate this assumption. Alternatively, a

parts count approach or failure mode and effect analysis can be used to produce a

value for dk. Considering the multitude of origins for this parameter it is considered

one of the more traceable assumptions contained within the Morse model.

The second assumption for the Morse model is the minimum probability of failure
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of the system, pmin. This assumption is equivalent to the maximum expected reliabil-

ity of the system being analyzed. If the Morse model is run over a very long number

of time steps the reliability of the system will approach (1 − pmin). Due to the fact

that this assumption sets the upper bound for the reliability output of the model it

is important to set the appropriate value. In order to generate this assumption in a

traceable manner we must have some sort of previous system or experience to draw

upon.

To generate the assumption using a previous system, the appropriate data must

exist for estimating the previous system’s mature reliability. It is important that the

mature reliability is known because it will most accurately represent the minimum

probability of failure of the system. A similar approach can be taken in using previous

experience to estimate this parameter. Using this approach will probably require

an order of magnitude type estimate, which says at best this system will have a

probability of failure of 1 in 100 or 1 in 1000. In reality this assessment will be based

upon the perceived complexity of the system with a more complex system being given

a higher minimum probability of failure. The second Morse model assumption can

be considered traceable if it is derived from a previous system. However, if previous

experience is used, caution must be taken in order to avoid biasing the reliability

estimate towards the over cautious or over optimistic.

The third Morse model assumption is the probability of defect trigger for each of

the defects identified by the first assumption. This assumption is the same as the

probability of occurrence parameter found in the Hall model. In order to accurately

estimate this parameter previous data must be used. For components or parts, many

different sources exist that contain failure rate data. Examples of such sources include

the Military Handbook for Reliability Prediction of Electronic Equipment [44], or the

Reliability Analysis Center Failure Mode/Mechanism Distributions [23]. Both of these

sources contain data pertaining to many parts and components that can be found in
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complex systems. The data is derived from testing or operations of each part and

component, which can be used to very easily generate distributions for the probability

of failure of a new component.

Obviously at the component or part level these assumptions can be considered

very traceable. However, at a higher subsystem level the comparison to the previous

component data becomes less obvious. In order to produce subsystem or system level

probabilities of failure, the component level data must be rolled up to the higher levels.

This requires additional information in regard to the number of components contained

within the system or subsystem, which will ultimately determine the assigned value

for probability of failure.

The next assumption for the Morse model is the conditional probability of LOV

given that a defect has been triggered, τk. This value relates to the amount of fault

tolerance or redundancy within the system. If a system has a high degree of fault

tolerance the occurrence of a single fault may not cause an LOV event, which equates

to a low value for τk. In practice, this parameter is much easier to estimate if it only

considers redundancy. If multiple defects are considered to be redundant, the value

for τk can be set accordingly.

Another simplification that can be made for this parameter is to only include

defects that contribute directly to an LOV event. In this case, fault tolerance and

redundancy is excluded and the τk parameter can be defaulted to 1. For an actual

launch vehicle however, fault tolerance and redundancy both come into play. During

early design there is typically no information regarding fault tolerance of the system,

which means that the assumption for τk may be difficult to trace.

The fifth assumption in the Morse model is the probability that a defect is ob-

servable given that a defect has occurred, νk. This parameter represents the chances

that a defect will actually be detected during operations, which will give the pro-

gram the opportunity to investigate the defect. An obvious source for information
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to derive this parameter is defect or anomaly reports from previous launches. For

example, after each launch of the STS vehicle a list of anomalies was generated for

future investigation [108].

The issue with the νk parameter is that it implies that the number of defects

that have not been detected are known. Even if detailed information from previous

launches is available, the number of defects that occurred that were not detected is

unknown. For this reason there can never be a truly accurate assessment of νk because

the information required to calculate it is always unknown. In order to produce this

parameter a best guess must be used based upon previous experience. Due to the

fact that the νk parameter cannot be traced back to actual data, it is considered to

be very detrimental to the traceability of the Morse model.

The next assumption for the Morse model is the probability that an anomaly is

noticed and reported given the anomaly was observable, φk. This parameter repre-

sents the chances that during post launch data analysis a defect is properly identified

and reported for future investigation. Just because a defect may have been detected

through flight data recording, does not necessarily mean that it will be investigated

prior to the next flight. The φk parameter was introduced into the model to represent

this situation.

In order to estimate the φk parameter data regarding post launch analyses must

be acquired. This data is not necessarily cut and dried however. To estimate the

probability of anomaly reporting there is a human factors effect that needs to be

considered. First, the rigor of post flight data analysis will stem from the leadership

and direction of the program. For example, it is expected that this analysis would be

much more rigorous for a manned launch vehicle versus an unmanned vehicle. The

second human factors consideration is in regard to the analyst performing the post

flight data analysis. There may be instances where one analyst catches certain defects

while another does not. All of these considerations make it very difficult to estimate
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the φk parameter, especially during conceptual design. Due to the lack of knowledge

about post flight data analysis during early design, φk can only be estimated using a

best guess approach. This is obviously detrimental to the traceability of the model.

The final assumption of the Morse model is the probability that the defect is

eliminated from the system prior to the next launch, γk. This parameter is equivalent

to the fix effectiveness factor that is used by the Hall model. If an anomaly was

detected and reported, corrective action may be taken to reduce the probability of

occurrence of the defect prior to the next flight. If the defect is completely eliminated,

γk is equal to 1. If no corrective action is taken γk is equal to 0.

To estimate γk from previous data, reports from defect elimination efforts must

be available. This includes any post launch analysis identifying the defect as well

as reports from the redesign efforts. In order to estimate the parameter from this

previous data, the probability of occurrence of the defect after the redesign must

be known. This means that additional flight data is required in order to determine

whether or not the defect occurred again after the redesign. In practice this data will

be very hard to gather and interpret. The probability of occurrence of the specific

defect after a redesign will be very difficult to derive from the data even if enough

data exists. As discussed in Section 3.9, this assumption requires a best guess type

approach.

After progressing through the Morse model assumptions, the assumptions used in

the Hall model can now be considered. As mentioned above, three of the parameters

from the Morse model align with the three primary assumptions of the Hall model.

This is simply due to the similarity in which the models were derived using the

number of failure modes and probability of occurrence approach. From Section 3.3.1.5

three parameters requiring assumptions were identified. These parameters include

the number of failure modes, probability of occurrence for the modes, and the fix

effectiveness factors.
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The first assumption, number of failure modes, is equivalent to the number of

defects assumption from the Morse model. As discussed above this type of assumption

can be generated via comparison to previous systems. The number of failure modes

can also be estimated using an existing technique such as parts count method or

failure mode and effect analysis. Due to the availability of multiple techniques for

generating this assumption it is considered to be very traceable in comparison to

other model parameters.

The second assumption for the Hall model is the probability of occurrence for the

failure modes. This parameter is equivalent to the probability of defect trigger in the

Morse model. Thus the same discussion above for the Morse model also holds for

the Hall model. The probability of occurrence can be estimated using databases of

failure rate data, especially if the failure modes are assumed to be at the component

or part level. Generating the probability of occurrence assumptions at the system or

subsystem level presents a little bit of a challenge since failure rate databases do not

exist. In this case a combination of the failure rate database at the component level

with a parts count type approach at the system or subsystem level could be used to

generate the assumptions. As long as this approach can be tied back to actual data

of previous systems, subsystems, components, or parts, the probability of occurrence

assumption can be made in a traceable manner.

The final assumption of the Hall model is the fix effectiveness factor. This assump-

tion represents the percent reduction in the probability of occurrence of a failure mode

if a redesign were to occur for that failure mode. Thus the fix effectiveness factor

comes into play after a failure mode has been observed and preventative action is

taken prior to the next launch. Similar to the γk parameter in the Morse model, the

fix effectiveness will be 1 for the case where the failure mode is completely eliminated

from the system and 0 when no fix is implemented. This assumption is the least

traceable of the parameters contained within the Hall model. As discussed above, it
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is difficult to pinpoint a value for this parameter even with a plethora of historical

data. In the absence of any data at all this assumption must be produced via a best

guess or ask the expert type approach, which is less desirable in terms of traceability.

The first “results” from Experiment 1 can now be derived from the qualitative

assessment of the traceability of the model parameters. In analyzing the assumptions

for both the Hall and Morse models it was shown that the models share three common

parameters. These three parameters are the number of failure modes, the probability

of occurrence of these modes, and the fix effectiveness factors. As discussed previ-

ously, these assumptions are thought to be very traceable compared to the rest. In

Section 3.3.2.2 a brief example problem was given, which illustrates how the number

of failure modes and probability of occurrence values can be derived from detailed

system analysis or previous system data. This is especially true when considering

parts or components, which benefit from the existence of failure rate databases.

The remaining parameters from the growth models are only included in the Morse

model. Parameters such as the probability of anomaly detection and the probability of

anomaly reporting are not measurable in practice. Therefore they can be considered

as non-traceable. Due to the fact that the Hall model excludes these parameters it was

concluded that the Morse model will be less traceable. The result of the qualitative

assessment of the model parameters therefore states that the Hall model performs

better in terms of assumption traceability.

3.4.1.2 Model Accuracy Testing

The traceability of the model assumptions will ultimately have an effect on the ac-

curacy of the resulting reliability estimates. Therefore, in addition to the assessment

of traceability a quantitative measurement of the model accuracy is required for Ex-

periment 1. This accuracy measurement will allow for the comparison of both of the
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model outputs versus previous vehicle data. As a result the setup of the model pa-

rameters can be further assessed and the model that most well represents the actual

data will be chosen.

To begin the model accuracy assessment of Experiment 1 previous data for com-

parison is required. Due to the fact that the growth models will be applied to a

launch vehicle design problem, previous launch vehicle data was desired. Ultimately

two launch vehicles were identified for use in Experiment 1. These vehicles were cho-

sen because of their lengthy launch history and the availability of reliability growth

data. The first vehicle is the Russian Soyuz launch vehicle.

For the purpose of the comparison of reliability growth models, the Soyuz vehicle

is a perfect candidate. This is due to its extensive launch history through which the

vehicle architecture remained unchanged. The Soyuz vehicle’s heritage can be traced

back to the R-7 rocket developed by the Soviet Union in the 1950’s [90]. As can be

seen in Figure 18 the architecture of the Soyuz is nearly identical to the R7 with the

exception of the addition of an upper stage. This is advantageous for applying the

reliability growth models in Experiment 1. The models can be setup to represent the

Soyuz vehicle architecture and the output can be compared to the entire reliability

growth history of the Soyuz family of vehicles.

The Soyuz launch vehicle itself consists of three stages. The first stage consists

of four symmetrical liquid rocket boosters (LRBs) surrounding the central “second

stage” [90]. Each of the boosters and the second stage have one liquid rocket engine

with four separate combustion chambers, which utilize liquid oxygen and kerosene as

propellant [90]. The third stage sits inline atop the second stage and contains another

single liquid rocket engine with four combustion chambers [90]. The third stage engine

also uses a kerosene propellant with liquid oxygen. As seen below, the right side of

Figure 18 shows a picture of the Soyuz launch vehicle in unmanned configuration.
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Figure 18: Soyuz launch vehicle (right) compared to the R-7 vehicle (left) [122, 125]

Figure 19: Soyuz launch vehicle reliability growth
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The reliability growth data for the Soyuz vehicle that will be used in Experiment

1 can be found in reference [62]. This data is also cited and re-illustrated in references

[58] and [108]. Figure 19 shows a re-creation of the Soyuz reliability growth data from

the references above. As can be seen in the figure the data shows reliability growth

over approximately 425 flights.

The second vehicle that will be used for model accuracy checking is the Space

Transportation System (STS), also known as the Space Shuttle. The Space Shuttle

was chosen because it benefits from a relatively long flight history (> 100) with the

same vehicle architecture. In addition, a vast amount of documentation in regard to

the design, test, and operation of the Shuttle is available.

Figure 20: Space Shuttle Discovery on mobile launch platform [123]

The Space Shuttle consists of four primary elements including the orbiter, external

tank, and two re-usable solid rocket boosters. On launch the solid rocket boosters

(SRB) are ignited along with three Space Shuttle Main Engines (SSME) housed in the

orbiter. These liquid engines burn a combination of liquid oxygen and liquid hydrogen,

which is stored within the external tank. Figure 20 shows the fully assembled STS

vehicle on a mobile launch platform. The black nozzles of the SSMEs can be seen in
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the foreground just aft of the orbiter vertical stabilizer. The external tank stands out

prominently in orange with an SRB attached to either side.

The STS system benefits from the availability of a vast amount of technical data,

which includes reliability growth data. Beginning in the 1980’s and carrying through

the retirement of the vehicle a highly detailed probabilistic risk assessment (PRA) of

the Space Shuttle was performed [129]. This assessment can be considered one of the

most detailed and accurate ever carried out for a launch vehicle program. Near the

end of the Shuttle program the PRA was used to demonstrate the reliability growth

that was achieved throughout its operating life. References [18], [78], and [79] provide

data tables illustrating the reliability growth of the STS in terms of decreases in the

probability of loss of crew. These tables provide the mean LOC probability along

with confidence bounds in the form of 5th and 95th percentiles. Figure 21 shows

the graphical form of the data including the percentiles. The data seen in the figure

illustrates the decrease in the probability of LOC between STS-1 and STS-133.
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Figure 21: Reliability growth curve from detailed STS PRA
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After identifying two vehicles for use in Experiment 1 the assumptions for both

the reliability growth models must be setup appropriately. In order to fully test the

accuracy of the growth models it will be assumed that the two identified vehicles

are new designs, which are not comparable to any historical vehicles. This is an

appropriate assumption considering the heritage of the Soyuz tracing back to one of

the first launch vehicles ever operated. Also, the Space Shuttle at the time of its

conception was a completely unique concept that had not been attempted before. In

order to avoid biasing the results, previous operational data, other than the reliability

growth data presented above, will be avoided for both these vehicles.

First, the assumptions for the number of failure modes will be completed. Since

comparisons or design data from previous systems do not exist, a simple parts count

type approach is appropriate for generating this assumption. The data retrieved for

the STS shows probability of LOC, therefore the failure modes to be considered for

this vehicle will stem from “parts” contributing directly to an LOC event. Since the

Soyuz data represents probability of LOM, only the “parts” that will lead directly to

LOM will be counted. Utilizing this very basic approach for generating the number

of modes assumptions represents a worst case scenario in terms of model prediction

accuracy.

The number of failure modes for the Soyuz vehicle will be considered first. As

shown in Figure 18 the Soyuz vehicle has four liquid boosters surrounding a liquid core

stage that ignite upon launch. Each booster contains liquid oxygen and kerosene to

be burned by its single engine. The core stage also burns liquid oxygen and kerosene

using a single liquid engine with four combustion chambers. The final Soyuz stage to

consider is the upper stage. There are multiple variants of the upper stage that have

been used throughout the program history [99]. The most common architecture is a

single engine liquid oxygen and kerosene upper stage [99].

In order to identify the appropriate number of “failure modes” for the system
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level assumptions it is important to refer back to the discussion in Section 3.9. This

section discusses the development of the reliability growth model assumptions and

addresses the approach for generating the number of failure modes assumption with-

out historical data. It is expected that a parts count type approach is appropriate in

this case as long as the “parts” that are counted contribute directly to the top level

event of interest.

For the Soyuz case the top level event of interest is a loss of mission. With this in

mind, the count of “failure modes” for the system level should be equivalent to the

number of events that contribute directly to a loss of mission. This can be illustrated

using a notional fault tree, which identifies all of the primary subsystem failures that

would contribute directly to an LOM. Figure 22 gives such a tree for the Soyuz vehicle.

Note that the liquid rocket boosters are labeled as LRB with a corresponding number.

LOM

LRB 3LRB 2LRB 1 LRB 4
Core 

Propulsion

Upper 

Stage

Core 

Avionics

Core 

Power

Figure 22: Notional Soyuz high level fault tree

From the figure above, eight possible high level failure modes can be identified for

the Soyuz vehicle. The core stage has been broken out into propulsion, power, and

avionics because the power and avionics subsystems are considered to be vital to a

successful ascent. For the system level reliability growth assumptions, eight modes

are listed in the figure above. In addition to these eight it is possible to also include a

common cause type failure for the liquid boosters as well as an upper stage avionics

or power system failure. The latter two failures are especially important to note

because the upper stage operates under its own power and guidance to reach orbit.
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Considering these extra failure modes, a range between 8 and 14 will be used for the

Soyuz system level assumptions.

It is important to note that the level of application of the growth model is a

determining factor in how the number of failure modes assumption is produced. Due

to the fact that the liquid rocket boosters are considered as subsystems, they are not

broken down any further to identify more specific failure modes. If the growth model

were to be applied at the subsystem level, each of the basic events seen in Figure 22

would be broken down into one more level of detail. This process will be discussed in

Section 3.5 and performed in the example problem presented in Section 4.2.

Next, the number of failure modes assumption for the STS vehicle needs to be gen-

erated. The STS consists of four primary elements, the orbiter, solid rocket boosters,

and external tank. The orbiter houses three primary subsystems that are essential to

the success of an STS launch, the primary avionics, power, and Space Shuttle Main

Engines.

For the STS assumptions the high level fault tree given in Figure 31 from Section

4.2 can be used. In this figure, the SRBs and external tank are left as basic events

directly below the top level event. The orbiter has been broken down further because

of its role in the success of a given launch. As with the Soyuz core stage above,

the avionics housed in the orbiter are critical to a successful ascent of the vehicle.

In addition, the SSMEs provide the sole source of thrust for the vehicle after the

SRBs are jettisoned. For these reasons the breakdown of the orbiter was considered

reasonable for generating the system level reliability growth assumptions. The growth

model for the STS vehicle will therefore use a range of 6 to 12 failure modes for the

system level.

The next assumption to be considered is the probability of occurrence of the

identified failure modes. This assumption is much more difficult to derive without

historical data for comparison. However, both of the authors of the growth models
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being considered give some insight into estimating this parameter. First, in develop-

ment of the model, Morse identifies three different trigger frequency groups for the

system failure modes [108]. Within these frequency groups Morse identifies broad

ranges for both probability of trigger and conditional probability of loss of mission.

It is important to note that the Morse model includes two parameters that deter-

mine the probability that a failure mode will cause LOM, while the Hall model only

uses one. The probability of occurrence parameter in the Hall model is equivalent to

the product of the probability of trigger and conditional probability of LOM within

the Morse model. Table 4 displays the product these parameters from the Morse

model, using the ranges given by Morse in [108]. From this table the overall range

in probability of occurrence of LOM can be taken as 0.05% to 71% as suggested by

Morse.

Table 4: Probability of LOM for three failure frequency groups

Frequency Group Probability of LOM

High 18% - 71%

Medium 0.25% - 7.5%

Low 0.05% - 1.5%

Note that in addition to identifying the ranges for probability of LOM for each

group, Morse identifies a range for the number of expected modes that fall within

each frequency group. These ranges are 0 - 5 modes for the high frequency group, 1

- 12 modes for the medium frequency group, and 2 - 20 for the low frequency group.

Considering the number of modes for the Soyuz and STS vehicles, it is expected that

most of the modes will fall within the low frequency group with one or two landing

in the medium or high groups.

Next, the probability of occurrence assumptions presented by Hall will be consid-

ered. In references [75], [76], and [77] Hall represents the probabilities of occurrence
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of the system failure modes using a Beta distribution. He also gives procedures for

estimation of the Beta shape parameters based upon given failure data. These pro-

cedures are set up to estimate the Beta shape parameters for two cases. The first

case is where the number of failure modes, k, is known. The second case allows the

number of failure modes to approach ∞.

Hall demonstrates these estimation procedures using assumed one-shot systems

such as an air-to-ground missile [77]. From the references above, multiple different

shape parameter combinations for complex one-shot systems such as missiles can

be identified. Table 5 lists some of the derived Beta parameters from [76] and [77]

along with the distribution mean and maximum values. These distributions can be

compared to the ranges given by Morse in Table 4 above.

Table 5: Beta parameters for probability of failure mode occurrence

Beta Parameters (α, β) Mean Maximum

0.19, 23.31 0.008 0.3

0.36, 14.99 0.023 0.4

0.19, 8.03 0.022 0.52

0.22, 8.75 0.024 0.54

Table 5 displays multiple sets of Beta parameters given by Hall for complex one-

shot systems. These distributions show a mean probability of occurrence of 0.8% to

2.3% and maximum values of 24% to 54%. In comparing these values to Table 4,

all of the maximum values fall somewhere within the high frequency group and the

mean values fall mostly within the low frequency group. Also, the number of failure

modes within each category provided by Morse would suggest a similar distribution

shape to what is given by Hall. As discussed above, Morse suggests that the number

of modes within the three frequency groups is skewed towards the low frequency

group. Therefore, a majority of the failure modes would fall between 0.05% and 1.5%
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probability of occurrence. If a random draw was taken using the Hall distributions

in Table 5 a majority of the cases would also fall within a similar range.

Due to this similarity in shape, a Beta distribution was determined to be ap-

propriate for the probability of occurrence assumptions. Since Hall provides Beta

parameters already, a distribution from Table 5 was selected for application in Ex-

periment 1. The parameters that will be used are the last in the list in Table 5, which

were selected because they produced the largest maximum value for probability of

occurrence. This was desired because the Morse assumptions indicate a maximum of

around 70% for probability of occurrence. This distribution also provides a mean of

around 2.5% with approximately 50% of the points within the low frequency group

identified by Morse.

Next, the assumptions for fix effectiveness factors can be considered. As discussed

in Section 3.3.1.5 the fix effectiveness factors represent the percent reduction in the

probability of occurrence of a failure mode, given that the mode has occurred and a

fix has been implemented. This parameter is equivalent to the γk parameter within

the Morse model, which represents the probability that a defect is eliminated from the

system given that it has been properly detected and reported. For this experiment the

same values will be applied for both the fix effectiveness factors and the γk parameter

in the Hall and Morse models, respectively. This will avoid potential bias within the

model results.

In Section 3.9 the generation of the fix effectiveness assumption was discussed

in more detail. It was identified that in practice, the fix effectiveness factors are

difficult to derive from vehicle data. Section 3.9 concluded that the most appropriate

manner of producing these assumptions was via expert judgment. This conclusion is

supported by Hall during the development of his growth model. Hall states that the

fix effectiveness factors are typically assessed via expert judgment and are assigned

during failure prevention review boards [77]. In lieu of a board of experts, values from
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the literature from Hall and Morse can be utilized for this experiment.

In reference [108] Morse states that the fix effectiveness or γk parameter is typically

very high for launch vehicles. This is due to the large amount of post flight data

analysis that is typically performed after a launch. The large expense of a launch

vehicle failure demands that any and all defects that have been detected within the

system should be investigated and potentially mitigated. Morse calls out a range of

between 75% and 90% for the γk parameter [108].

As mentioned previously, Hall acknowledges that the fix effectiveness factors are

typically determined via expert judgment [75, 77]. In reference [77], he gives a table

of fix effectiveness factors from an unspecified air-to-ground missile program. These

factors are said to have been developed during a failure prevention and review board

for the program [77]. The table presented by Hall shows a range of 70% to 95% for

the fix effectiveness factors of the missile system.

From the ranges given by Hall and Morse a range for application in Experiment 1

can be derived. As discussed previously, the fix effectiveness will be greatly affected

by the rigor of post flight data analysis and designer experience. The fix effectiveness

may also be positively impacted by a long flight history, which allows the designer to

assess the vehicle many times within its operating environment. The more detail the

designer has about the operation of the vehicle systems the better equipped they will

be to completely correct defects that surface in the future. Due to the fact that the

Soyuz and STS vehicles are both manned a large amount of post flight data analysis

can be expected in each program. In addition these vehicles benefit from a relatively

long flight history using the same vehicle architecture. Therefore, we would expect to

achieve a very high value for fix effectiveness. The range of fix effectiveness used for

Experiment 1 will then be set based upon the top end of the ranges stated by Hall

and Morse. Experiment 1 will utilize a uniform distribution for the fix effectiveness

factors ranging between 90% and 99%.
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After determining the fix effectiveness assumption, all of the parameters for the

Hall model have been covered. The remaining assumptions that need to be addressed

are all from the Morse model. The first of these remaining assumptions is the mini-

mum probability of failure for the vehicle. This parameter represents the maximum

reliability of the vehicle, which will have a great effect on the accuracy of the growth

estimate. As discussed in Section 3.9 this assumption is difficult to determine for a

specific vehicle. The only way to generate this assumption is to determine the maxi-

mum reliability of previous vehicles, which may or may not be similar to the vehicle

being analyzed.

Morse states that the historical best for this parameter is a probability of failure

of 1 in 200 at 200 flights [108]. For the STS vehicle, this value will be used directly

because the launch history only includes 135 flights. This suggests that the vehicle

could approach a probability of failure of 1 in 200 after 70 additional flights. The

Soyuz vehicle has a much longer history of around 425 flights, which will require a

slight adjustment in the minimum probability of failure. Since the Soyuz vehicle has

over twice the number of flights as what was quoted by Morse as the historical best,

a minimum probability of failure of 1 in 400 will be assumed.

The remaining two parameters of the Morse model are; the probability that an

anomaly is observable given that it has occurred and the probability that the anomaly

is noticed and reported. In Section 3.9 it was pointed out that these assumptions are

particularly difficult to determine, even if a plethora of historical data is available.

The probability that an anomaly is reported is greatly affected by both the rigor of

the post flight analysis and the analyst carrying out the review. For these reasons

the ranges suggested by Morse will be used in Experiment 1. The range given for the

probability of anomaly detection is 75% to 95% while the range for the probability of

anomaly reporting is 75% to 90%.

Now that all of the assumptions for both the growth models have been determined,
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the models can be implemented for each vehicle. The equations given by Morse [108]

and Hall [75] were thus coded in Matlab in order to carry out the analysis. A Monte

Carlo simulation using both models was carried out for the Soyuz and STS vehicles

utilizing the assumptions laid out above. In order to compare the output accuracies,

the model results were compared to the retrieved data for each launch vehicle. A total

sum of the error was taken across the flight histories in order to make a quantitative

comparison between the models. This process will be discussed in more detail in the

next Section, Section 3.4.2. Table 6 below gives a summary of the assumptions that

have been determined above.

Table 6: Reliability growth assumptions for Experiment 1

Parameter Soyuz Value STS Value

Number of Modes 8 - 14 6 - 12

Probability of Occurrence Beta(0.22,8.75) Beta(0.22,8.75)

Fix Effectiveness 90 - 99 % 90 - 99 %

Observable Anomaly 75 - 95 % 75 - 95 %

Reported Anomaly 75 - 90 % 75 - 90 %

Number of flights 425 135

3.4.2 Experiment 1 Results

Section 3.4.1.2 presented two vehicles for use in testing the Hall and Morse model ac-

curacies. After identifying the STS and Soyuz vehicles the growth model assumptions

were developed near the end of the section. Using these assumptions both growth

models were run within Matlab. For each model, reliability distributions at each

step in time were output, which allowed for the generation of the model mean and

percentiles to compare to the historical data. In order to generate these distributions

at each step in time a Monte Carlo (MC) simulation was run for each step using a
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random draw from probability distributions created from the assumptions in Table 6.

A quantitative error metric was then introduced in order to compare the Hall and

Morse models. This metric was calculated as the total sum of the error of the models

at each step in time. The error was defined as the difference between the model mean

and the mean from the historical data. These errors can be seen for both the Soyuz

and STS vehicles in Table 7. This table quickly shows that the Morse model performs

worse in terms of total error. The Hall model has nearly one half of the total error of

the Morse model for both vehicles. Based upon this observation it is expected that

the Hall model results will more closely approximate the actual vehicle data.

Table 7: Reliability growth assumptions for Experiment 1

Model STS Total Error Soyuz Total Error

Hall Model 0.3897 0.9601

Morse Model 0.5344 2.037

After observing the generic error data for both models and both vehicles, the full

output of the models can be examined. Figure 23 and Figure 24 display the results

from the Hall and Morse models respectively, versus the given Soyuz reliability growth

data.

The first figure, plotting the Hall model results, shows a decent agreement between

the predicted and actual reliability values. The Hall model seems to capture the

correct curvature of the growth history, but it does over estimate the reliability of the

vehicle during the early flights. This over estimation occurs primarily between flight

0 and flight 75, where the Hall model results begin to fully encompass the actual data.

Although this over estimation is large at certain points, the model prediction starts

to converge towards the actual value during the later portions of the flight history.

The over prediction of the early reliability of the Soyuz by the Hall model becomes

less worrisome after analyzing the Morse model results. As can be seen in Figure 24,
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the Morse model grossly over predicts the Soyuz reliability for nearly the entire flight

history. In this case the over prediction spans from flight 0 all the way to flight

425. These results show that the Morse model was not able to accurately predict the

growth trend of the Soyuz vehicle. Therefore, the Soyuz results for Experiment 1 are

not a promising start for the Morse model.
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Figure 23: Hall model growth prediction versus Soyuz data
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Figure 24: Morse reliability growth model prediction versus Soyuz data
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After considering the Soyuz reliability growth predictions, the Hall model can be

considered the leading candidate for application in the CONTRAST method. The

STS vehicle results will ultimately determine if the Hall model will be selected. Figure

25 and Figure 26 plot the predicted versus actual reliabilities for the STS vehicle.

In Figure 25, the Hall model reliability prediction is plotted versus the PRA data

for the STS. Note that the STS reliability data contains not only a mean value, but

a 5th and 95th percentile value as well. Similar to the Soyuz vehicle, the Hall model

captures the reliability growth trend of the STS very well. However, the STS vehicle

prediction actually performs better because there is no longer any over prediction

during the early flights. As can be seen in the figure, the Hall model mean value

tracks very well with the actual PRA data and ends up slightly higher than the

actual STS data at the last flight. The 5th and 95th percentiles from the Hall model

have a fairly wide range, but are able to encompass nearly all of the PRA data.

Figure 26 shows the Morse reliability growth prediction versus the same STS PRA

data. This figure shows a similar trend to the Soyuz prediction from the Morse model.

In this case, the Morse model has again over predicted the reliability of the vehicle

for the entire flight history. Although the predicted data seems to capture the general

shape of the actual reliability growth trend, the values for reliability are well above

the actual.

After considering the Soyuz and STS reliability growth results from the Hall and

Morse models, the appropriate growth model has become very apparent. For both

of the vehicles the Hall model tracked very well versus the actual data. The Morse

model on the other hand was not close to the actual data as it was drastically over

predicting the reliability of the vehicles over their entire flight history. From these

results it is clear that the Hall model will be able to provide more accurate reliability

growth predictions. In terms of relative accuracy, the Hall model can be deemed the

most appropriate for application in the CONTRAST method.
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Figure 25: Hall reliability growth model prediction versus STS data
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Figure 26: Morse reliability growth model prediction versus STS data
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3.4.2.1 Conclusions

Experiment 1 tested two reliability growth models, which were potential candidates

for application in the CONTRAST method. Both the traceability of the assumptions

and the relative accuracy of the model outputs were tested. As discussed in Section

3.4.1.1, the Hall model was deemed to be more desirable in terms of traceability.

This is primarily due to the large number of parameters that must be estimated in

order to run the Morse model. In Section 3.4.2, the relative accuracy of the growth

model predictions was tested versus two actual launch vehicles. From the results in

this section it is clear that the Hall model will perform better in terms of prediction

accuracy.

Due to the fact that the Hall model performed better for both of the major

selection criteria, it can be officially chosen for use in the CONTRAST method. This

conclusion is in line with the original hypothesis, which identified the Hall model as

the most desirable. Therefore, hypothesis 2 can be accepted based upon the results

of Experiment 1.

3.5 Research Question 3: Level of Application

In the previous section a reliability growth model was selected for application in the

CONTRAST method. Growth methods were chosen because they generate reliability

estimates as a function of time. This type of output was identified as the most desir-

able in Section 3.1. Although the method selected in the previous section produces

the desired output, the application of the growth model must be determined. These

models can be applied at many different levels of characterization of the system,

which will have large implications in terms of the availability and traceability of the

information used to generate the model assumptions. To determine the appropriate

level of application research question 3 was posed.
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Research Question 3

What level of characterization is appropriate for the application of a

reliability growth model during conceptual design?

The levels of characterization of a system are related to the hierarchical decomposi-

tion of the system from the top level down to its parts [15]. An example decomposition

from reference [15] will be used for this discussion. The eight level characterization

seen in Table 8 shows the breakdown of a system from the top level down to the spe-

cific material of each part. At first glance there are seven possible levels at which the

growth model could be applied, which excludes the lowest material level. However,

not all of these levels are applicable early in the design process.

Table 8: Eight-level system characterization

Level Characterization

0 System

1 Subsystem

2 Major Assembly

3 Assembly

4 Subassembly

5 Component

6 Part

7 Material

In order to address research question 3 the levels of characterization can first

be compared to the generic design process from Section 2.1. The typical launch

vehicle design process can actually be equated to a descent through the levels of

characterization seen in Table 8. During the early pre-conceptual and conceptual
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design phases focus is placed on identifying a baseline vehicle architecture that can

meet the specified program requirements. At the end of the conceptual phase a

baseline vehicle architecture has been selected, which includes a description of the

vehicle architecture along with generic descriptions of its subsystems. The early

design phases therefore only address the top-most levels of characterization.

The preliminary design phase introduces increased fidelity analysis for all of the

subsystems within the vehicle. The goal of this phase is to solidify the set of system

and subsystem design specifications, which may result in the production of engineering

test articles. In producing such specifications more details will be determined for the

assembly and component levels of characterization.

The final phase, detailed design, defines the detailed specifications of all hardware

within the system. During this phase built-to specifications are produced, which are

used to fabricate more detailed test articles or actual flight hardware. The detailed

design phase therefore fills in the remaining information regarding the lowest levels

of characterization including part and material.

The comparison of the design phase to the levels of characterization shows that the

level of application of the model will have a large effect on the amount of information

required to define the model parameters. At the lowest levels not only individual

part or component specifications are needed but any interactions and relationships

between them as well. However, there may be an added benefit to using lower levels

when considering the availability of data for producing the assumptions.

The natural starting point for producing the reliability growth model assumptions

is to look at data from a previous similar system. For launch vehicles this data includes

any test or flight history from a system with a similar architecture. This criterion of

similarity will actually be easier to satisfy at the lower levels of characterization. To

illustrate this point, consider the production of system and subsystem level growth

assumptions based upon historical data.
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In order to set the system level model assumptions based upon historical data, the

new vehicle must first be compared to previous vehicles to find a suitable surrogate.

As discussed in Section 3.2.1.7, MIL-STD-756B gives guidelines for the validity of

these types of comparisons. Therefore, the success of this approach is reliant on the

existence of previous vehicles that are similar to the new vehicle. In addition, the

previous vehicles must have a sufficient operating history in order to prove a certain

level of reliability achievement. This point is especially relevant when considering

launch vehicles. Although the U.S. has had many different launch vehicle programs

in the last 60 years, not all of them can be utilized for comparisons. This is due to

either insufficient amounts of data, or the complete lack of data altogether.

Programs with insufficient data are ones in which the vehicle made it through the

design process only to get canceled after a small number of test flights. Two examples

of this type of program are the Blue Scout and the Ares I. Blue Scout flew two test

missions and a failed satellite launch attempt in 1961, only to get canceled before

the production of more operational vehicles [93]. Ares I is a more recent example,

which flew its first test flight in 2009 before being canceled in 2010 [1]. In both

these examples, the vehicles did not fly enough to demonstrate an achieved level of

reliability.

There are many more programs that lack reliability data altogether. These pro-

grams are ones in which the vehicle did not perform any test flights before cancellation.

Examples of this type of program are the Navy Earth Satellite Vehicle Program in

the ’40s, Project Orbiter in the ’50s, Orbital Express in the ’90s, and the Ares V in

2010 [93]. Each of these programs went through the early design phases, but were

canceled prior to flight testing.

As illustrated by these examples, generating the growth model assumptions at

the system level may be difficult due to the limited amount of historical data. This

limitation stems from the fact that the entire system must demonstrate a certain level
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of reliability achievement for the data to be viable for comparison. It is expected that

more data will be available at the subsystem level due to the amount of testing that

is performed during a typical vehicle program. Although the full vehicle may not

have flown, the engines, structures, separations systems, etc. all may have undergone

extensive testing. This testing is sufficient for producing reliability data that can be

used for comparisons.

For example, before the first flight of STS, the Space Shuttle Main Engine was

estimated to have undergone approximately 70,000 seconds of testing at rated power

level [11]. If the program had been canceled at that point, sufficient data for com-

parison to the SSME would have been available. However, no data would have been

available for the STS as a whole, which would remove it from consideration for any

system level comparisons.

In addition to testing that occurs during development programs, subsystem data

benefits from technology demonstration programs as well. Many of the NASA X

programs did not produce operational vehicles, however, they did serve as successful

test beds for the demonstration of new subsystem technology [113]. Other technology

development programs, such as the Air Force integrated high-payoff rocket propulsion

technology program or the NASA Space Launch Initiative, produced many different

engine technology demonstrations [141]. Although a majority of the engine develop-

ment programs were canceled, many of them underwent physical testing, from which

data could be derived for reliability comparisons.

Through the previous discussion two observations can be drawn regarding the

level of application for the growth models. First, the highest levels of characteriza-

tion are more desirable in terms of the information required to generate the model

assumptions. At the lowest levels the exact type and number of components or parts

must be known along with their associated specifications in order to generate the

model assumptions. Second, considering the availability of previous reliability data
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shows an opposite trend. If the growth model assumptions are generated based upon

comparison to historical vehicles it is expected that more viable data will be available

at the lowest levels. This is primarily due to the amount of sub-scale testing that

typically occurs during a launch vehicle program.

With these observations in mind it can be concluded that the appropriate level for

application of the growth models will find a balance between the required detail and

the availability of information for comparison. If no data exists for comparison the

assumptions for a new system must rely solely upon judgment, which will introduce

error into the output. On the other hand, if the level of application requires too

much detail regarding the specific components of the system the assumptions cannot

be produce using the information available during conceptual design.

After noting the trade-off that exists between data availability and required level

of detail, some typical design trades can be considered. This will help identify the

level of detail required to capture any relevant trades that could be considered during

conceptual design. It will also clarify the ability of the model to capture certain

architecture effects when applied at different levels of characterization.

Typical design trades and architecture upgrade options can be identified from

existing vehicles as well as current design work. Vehicles such as the STS utilized the

same architecture throughout the entire program, however, incremental upgrades were

performed on some of the subsystems. For example the oxidizer and fuel turbopumps

within the SSME were upgraded at separate points during the program [78]. Other

upgrades to the vehicle included changes in the thermal protection system of the solid

boosters and a new application process for the external tank foam [78]. Considering

these types of incremental upgrades would require the ability to support trades at

the assembly level, which is directly below the subsystem level.

Another list of possible architecture trades can be derived from the concept of

launch vehicle families. For example, the Atlas V and Delta IV vehicles each have
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multiple different variants, which can be selected by the customer based upon the

payload and desired orbit [160, 161]. The Delta IV vehicle utilizes a common core

element, which makes up the first stage of every variant [161]. In addition to the first

stage, strap-on solid boosters can be included on the vehicle with the Delta IV heavy

variant utilizing two common core elements as boosters [161]. The Atlas V family

contains a number of variants that differ based upon the number of strap-on solid

boosters and the number of engines in the upper stage [160].

The architecture changes within the Atlas and Delta vehicle families represent

trades at a higher level than the STS example from above. Trades such as number

of strap-on boosters or number of upper stage engines represent subsystem level de-

cisions. These trades are more typical of the studies performed during conceptual

design. For example consider the Space Launch System (SLS), which is currently

being developed by NASA. During the early design phases of the SLS, studies were

performed to identify the appropriate liquid engine and number of engines for the

core stage of the vehicle [86]. In addition, potential upgrades for the upper stage and

boosters are being considered [32, 33, 151]. These options represent trades at the

subsystem level.

During conceptual design the subsystem level trades illustrated by the Atlas and

Delta vehicle families and the SLS design work will be of most interest to the reliability

analyst. Trades at the assembly level may be of some interest if heritage hardware

that may require upgrades for future use is being considered. However, considering

trades at levels below the assembly level may not be practical and will not necessarily

offer any added value to the design process.

After identifying subsystem and assembly level trades that would be of interest

during conceptual design the levels of application of the growth model can be consid-

ered. This thought experiment will clarify the approach needed to capture such trades

when applying the model at different levels of characterization. The application of
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the model at the system level will be considered first.

In Experiment 1 the growth models were applied at the system level and a basic

parts count approach was used to generate the number of failure modes assumption.

This approach was applied at the next lowest level of characterization, which counted

the subsystems within the vehicle. The modes included in the growth model therefore

represent the subsystems and their associated probabilities of failure.

In order to perform subsystem level trades using the system level growth model

the modes assumptions can be adjusted accordingly. For example, addressing a trade

between number of engines or boosters would only require a change in the number of

modes included in the model. If multiple different alternatives were being considered

for a specific subsystem, the probability of failure assumption would need to be used to

differentiate between the options. However, certain configurations of the subsystems

cannot be captured using the system level model. The formulation of the growth

model inherently assumes that each of the failure modes are independent and in series.

Therefore, redundant subsystems cannot be captured directly using the system level

assumptions. In addition, options such as engine out capability will not be captured.

Applying the growth model at the second level of characterization, subsystem,

will help alleviate the limitations of the system level model. In this case the parts

count approach identifies the key assemblies within each subsystem. For example,

the parts count for a liquid engine would include items such as the fuel and oxidizer

turbopumps and the primary combustion chamber. Subsystem level trades such as

number of engines or boosters can now be captured by adjusting the number of

implementations of the model. Capturing differences between subsystem options can

also be done in more detail as both the number of modes and probability of occurrence

distributions can be adjusted.

The application of the model at the subsystem level also introduces the ability to

consider assembly level trades. These trades will include incremental updates to the
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vehicle subsystems similar to the STS upgrades discussed previously. For example, to

represent a potential upgrade to an engine turbopump the probability of occurrence

value for the specific mode can be adjusted. Additionally, the number of modes can

be adjusted to explore trades between single and multiple turbopump configurations.

The subsystem level model can explore assembly level trades, but it is important to

note that the assemblies within the model are all assumed to be in series. Therefore,

redundancy at the assembly level cannot be captured using this level of application.

Applying the growth model at the next lowest level would allow for the capture of

redundancy at the assembly level. However, this level of application begins to require

more detail in order to assess trades at the system and subsystem levels, which are of

most interest during conceptual design. In applying the model at the assembly level,

each subsystem will represent some number of model instances. A subsystem with 8

primary assemblies for example, will require a set of assumptions for 8 growth models.

Since the models represent each assembly, the failure modes within the models pertain

to individual components. This clearly illustrates a potential issue with applying the

growth model at the assembly level or lower. A vast amount of information would be

required to setup the assumptions for every component within the system.

Assuming all of the information is available and the growth models are imple-

mented for each assembly, the system and subsystem level trades can be captured. In

order to implement these trades however, an additional step is needed. To wrap the

assembly level model output all the way to the system level the relationships between

the assemblies must be known. Using an additional analysis technique such as a fault

tree or reliability block diagram the subsystem and system level reliabilities can be

calculated. This means that in addition to the detailed data required to produce

the model assumptions for each component, the relationships between the assemblies

must be known. Although application of the growth models at lower levels of charac-

terization would capture very detailed design trades, producing the necessary model
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assumptions is not realistic during conceptual design.

Following the identification of typical architecture trades of interest and a brief

assessment of the ability to capture such effects using growth models varying levels

of characterization, two primary observations can be stated. First, the highest level

of application for the growth models will limit the amount of available historical

information for generating the assumptions. Although historical data is not the only

reference for assumption generation, it serves as a traceable source that can at least

be used to validate the growth model. In addition to this potential lack of data, the

system level application is inherently limited in the architecture effects it can capture.

Since the growth model assumes that all modes are in series, the effects of subsystem

redundancy and engine-out capability cannot be observed.

The second observation is in regard to the application of the growth models at the

assembly level or lower. Applying the models at these levels will likely improve the

availability of historical data for comparison, however, a large amount of information

is required regarding the vehicle design. In order to apply the growth model at such

a low level, details for every component and the relationships between each assembly

are needed. Even if this information was available during conceptual design the

application of the growth models at the assembly level will capture more detail than

is necessary.

After stating the observations the subsystem level of application appears to be the

most appropriate option. The system level of application will not allow for the capture

of all relevant architecture trades, while lower levels will provide more information

than is necessary. Therefore, the CONTRAST method will apply the growth models

at the subsystem level in order to balance the information availability and level of

output detail. This conclusion is reflected in the assertion to research question 3.
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Assertion to Research Question 3

Applying the reliability growth models at the subsystem level will

provide an adequate level of detail to capture relevant architecture

trades while avoiding issues with data availability.

3.6 Research Question 4: System Level Estimates

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

The conclusions drawn from research question 3 resulted in the decision to apply the

reliability growth model at the subsystem level. However, the desired output of the

method is a reliability growth projection at the system level. The Reliability and

Safety Analysis step of the generic decision-making process will therefore be split into

two separate steps. The first represents the application of the growth models to the

subsystems. The second will require an approach for wrapping the subsystem level

growth curves up to the system level. In order to identify an approach for this step

research question 4 was posed.

Research Question 4

How can subsystem level reliability growth curves be combined to

produce an overall system level growth estimate?
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Five potential solutions to research question 4 can be identified. The five possi-

ble options to combine the subsystem reliabilities into a system level reliability are:

simply multiply the subsystem level estimates across all subsystems, use reliability

block diagrams, fault tree analysis, Markov chains, or stochastic Petri nets. In this

case, referring back to the derived requirements for successful completion of the main

research objective will aid in selecting a technique. From the requirements, stated

in Section 2.4, two primary metrics can be derived to facilitate comparisons between

the options for research question 4.

First, the method must be capable of analyzing many different vehicle concepts,

which means that the selected option must be flexible. Thus, the ability of each of the

options to represent many unique concepts will translate into the metric of flexibility.

The second metric also stems from the requirement that the method must evaluate

many different vehicle concepts. Due to the large number of concepts present in

a typical architecture trade space, a manual process for creating the system level

reliability estimates is undesirable. Therefore, the chosen option must be able to

be automatically generated for each vehicle concept in order to maintain a practical

evaluation time for the overall reliability assessment method. This will translate into

the metric of automatic generation.

The first and simplest identified option for research question 4 is to multiply

the subsystem level reliabilities to produce the system level reliability. The inherent

assumption with this technique is that all the subsystems are in series. This means

that any failure of a subsystem results in a failure of the system as a whole. Although

this assumption may hold for some vehicle concepts, it does not allow for the inclusion

of redundant systems. Therefore, this option is not flexible enough to evaluate a wide

variety of vehicle concepts.

For the second metric, automatic generation, this option performs the best out

of all four. Due to the simplicity of this option, no additional setup is required to
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produce the system level estimate. A single evaluation of a simple equation is all that

is needed. Even though the simple multiplication method would be the most rapid,

its lack of flexibility eliminates it from consideration.

The second identified option is the use of reliability block diagrams (RBD). In

RBD, the subsystems can be represented using blocks that are connected based upon

a physical decomposition of the system. Therefore, the RBD technique is very flexible

because blocks can be set up in many different configurations. As was discussed in

Section 3.2.1.6, series, parallel, k-out-of-n, switches, and other configurations can be

included in the system model. For this reason RBD scores well for the metric of

flexibility.

In terms of automatic generation, RBD is conducive to the idea. It is very possible

to automatically generate a system block diagram based upon a set of rules and

general system information. However, for complex systems this may become difficult,

especially if switches and k-out-of-n type configurations exist. This leaves RBD as

desirable in the area of automatic generation as long as the system diagram is not

overly complex.

The third option for research question 4 was to use fault tree analysis (FTA),

which was discussed in detail in Section 3.2.1.5. Similar to RBD, FTA utilizes a

decomposition of the system as a graphical representation. In a sense, FTA can

be considered an analog to RBD in that it is failure oriented while RBD is success

oriented. For the same system, FTA and RBD should produce the same reliability

predictions [171]. Thus, FTA possesses the same amount of flexibility as RBD because

it is able to incorporate complex system configurations.

In terms of automatic generation, FTA is very similar to RBD. Many software

tools exist for evaluating fault trees, and there are many potential approaches for

automatic generation of the trees. Due to the analogous nature of FTA and RBD,

both of these methods score the same against the two metrics of interest.
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The fourth option for research question 4 is Stochastic Petri Nets (SPN), which

was discussed in detail in Section 3.2.1.9. Stochastic Petri Nets utilize a local state-

space representation of a system to evaluate the probability that the system will enter

an undesirable state over a given period of time. An SPN model is very flexible and

can contain many different system states and transition gates based upon multiple

different probability distributions. In addition, the SPN is able to capture dynamic

failure rates and aging effects. These abilities lead to the conclusion that SPN is the

most flexible of all the identified options for research question 4.

Although SPN is considered to be the most flexible option, it does not fare well

when considering the second metric, automatic generation. Due to the vast flexibility

of the model, a large amount of information is needed to set up the SPN. This

information includes the failure rates for each subsystem being modeled as well as

the various states the subsystems may enter during operation. Due to the state-space

representation used in SPN, each subsystem in the overall system would need to

be modeled as a token. Using this approach introduces additional complexity when

determining the proper links between the states and transitions. The appropriate

rules for the passing of each subsystem between states would need to be incorporated

in the model. Considering the details that need to be incorporated in the model,

SPN is currently not conducive to automatic generation. For this reason SPN can be

eliminated from consideration.

The final option for research question 4 is Markov chain analysis, which was

discussed in detail in Section 3.2.1.8. Markov chains are global state-space represen-

tations of a system. Similar to SPN, Markov chains utilize states and transitions to

model a system. However, Markov chains do not include the ability to use dynamic

failure rates. In addition, Markov chains are limited to the use of exponential failure

distributions [88]. These considerations make Markov chains much less flexible than

SPN, but they can still be considered similar to FTA and RBD in terms of flexibility.
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For automatic generation, Markov chains can be considered slightly better than

SPN. However, the automatic generation of Markov chains is considered to be imprac-

tical. As was discussed in Section 3.2.1.8, Markov chains can suffer from a state-space

explosion when modeling complex systems. If the system is made up of many differ-

ent components, the number of states that are represented in the Markov chain can

become prohibitively large. If the number of states is large, automatic generation of

the model becomes very difficult and may require an unrealistic amount of computa-

tion time. As with SPN above, Markov chains will be eliminated from consideration

due to their limitations in the area of automatic generation.

After considering the five options for research question 4, the FTA and RBD

techniques can be identified as the most promising. Due to their similarity it is

likely that either technique will be useful for application in the CONTRAST method.

However, fault trees do hold a slight advantage. This is due to their failure oriented

nature, which is in line with the Hall reliability growth method that uses number of

failure modes as an input. For this reason, hypothesis 4 was derived, which identified

FTA as the desired technique.

Hypothesis 4

If a system level fault tree is used to combine subsystem reliability

estimates, then the resulting system level estimate will be more

flexible than simple multiplication without encountering issues with

automatic generation as with SPN or Markov analyses.
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3.7 Experiment 3

Hypothesis 4 was developed in the previous section based upon an assessment of the

perceived flexibility of the options for research question 4. At the conclusion of the

section only two options remained for consideration, FTA and RBD. These remaining

options will need to be compared across the second criterion, automatic generation.

Since these techniques are very similar to one another it is expected that they both

possess the same amount of flexibility. Therefore, the selection of one technique will

come down to the ease in which the model can be automatically generated.

In order to assess this criterion, a literature search will be used to identify auto-

matic generation techniques and software for RBD and FTA. This search will give an

idea of how commonly these analyses are automatically generated. After conducting

the literature search, it may be necessary to test the automatic generation of both

RBD and FTA. This test will be conducted if the literature search yields very simi-

lar results for both analyses. The results of the literature search will be considered

similar if the analyses have multiple approaches or commercially available programs

for automatic generation.

If a test of automatic generation of RBD and FTA analyses is necessary, two

additional criteria are proposed. These criteria are the setup and runtime of the au-

tomatic generation process. It is expected that for the same system, both techniques

will produce the same reliability output. Thus, the setup and runtime of each tech-

nique is the deciding factor for which one will be applied in the CONTRAST method.

To test the setup and runtime, automatic generation techniques or software will be

selected based upon the literature search. An example matrix of alternatives (MOA)

will be setup, which will contain representative vehicles. This MOA will allow for

the evaluation of the runtime of the automatic generation of RBD and FTA across

multiple different vehicle architectures. Ultimately, the time required will determine

which technique will be applied.
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If the setup and runtime are nearly the same for both RBD and FTA, the selection

of an option will be considered inconsequential to the success of the CONTRAST

method. If no difference in time exists between the options, then the method should

be insensitive to this selection. Ultimately, hypothesis 4 will be substantiated if FTA

performs better than RBD for the setup and runtime criteria. If the evaluation times

are nearly identical, then the hypothesis will also be accepted. If RBD performs better

than FTA, then the hypothesis will be rejected. Upon rejection, a new hypothesis

will be formulated to reflect the results of Experiment 3.

3.7.1 Experimental Setup

3.7.1.1 Current FTA and RBD Tools

To begin the setup of Experiment 3, current tools for generating FTA and RBD

analyses must be considered. Many current techniques exist for generating FTAs and

RBDs, one of which may be suitable for application in the CONTRAST method.

Table 9 displays the list of existing FTA and RBD tools that were reviewed for

Experiment 3. In addition to the tool name and developer, columns were added to

identify if the tool performed both FTA and RBD. The last column identifies the tools

that are completely free of charge, free via a limited trial, or not available except by

purchase. A website reference is given for each tool that offers a free download or

trial.
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Table 9: List of existing FTA and RBD tools

Tool Developer FTA RBD Free

RAPTOR [162] USAF Yes Yes Yes

Reliability Workbench Isograph Yes Yes No

Synthesis [136] ReliaSoft Yes Yes Trial

CAFTA [50] EPRI Yes No Trial

OpenFTA [5] Auvation Yes No Yes

RAM Commander ALD Yes Yes No

FTA Toolkit Item Yes No No

The list of tools in Table 9 is not meant to be an exhaustive list of tools available

for use today. Many more tools for FTA and RBD exist, however, these tools all offer

nearly identical capabilities. The goal of the list was to illustrate the various tool op-

tions available to the reliability analyst. The tools listed in Table 9 range from very

complex integrated environments to simple GUIs. For example, the ReliaSoft Syn-

thesis reliability software is meant to be an environment that can be used to integrate

all types of reliability analyses including FMEA, RBD, FTA, FRACAS, maintenance

analyses, and reliability growth. The simplest tool in the list is RAPTOR, which is

a GUI based RBD or FTA program.

All of the tools in the list were initially considered for use in the CONTRAST

method. However, after identifying that some of the software was not openly available,

the list was pared down. The tools such as the Isograph Reliability Workbench

and RAM Commander were eliminated from consideration because they were not

available for use without purchase. The remaining options included two tools that

are completely free, RAPTOR and OpenFTA, and two tools that allow for free trials,

Synthesis and CAFTA.

The Synthesis reliability tool is the most complex of the tools in the list. This

122



www.manaraa.com

software is meant to be a platform for all other reliability analyses to be run and

integrated. Although a free trial version of the tool was offered, it was not considered

as a realistic option for application in the CONTRAST method. This is primarily

due to the expected learning curve and the execution time of the analysis. Since

the method will be using very simple FTAs or RBDs a complex platform such as

Synthesis is not needed.

On the opposite side of the spectrum is the RAPTOR tool, which was originally

developed by the U.S. Air Force. This tool consists of a very simple GUI that allows

the user to assemble and calculate reliability block diagrams and fault trees. The tool

is very easy to use and gives standard visualizations for both FTA and RBD. This

simplicity makes RAPTOR desirable for application in the CONTRAST approach.

However, the tool was only operable via the GUI, which would make automation of

the FTA or RBD generation problematic. In order to run cases and assemble FTAs

or RBDs automatically a wrapper would need to be created to interact with the GUI.

It is expected that this operation would cause a very large increase in the required

run time of the FTA or RBD analysis. For this reason the RAPTOR tool was also

eliminated from consideration.

Considering the automation of the RAPTOR tool brings up a very important

point when considering the pre-existing FTA and RBD tools. Due to the fact that

the CONTRAST method is using very simple FTA or RBD, implementing an existing

tool may cost more run time than it’s worth. The existing tools all offer great options

for visualization of the diagrams. They also allow for either quantitative or qualitative

calculation of the FTA or RBD. Since the method will be evaluating thousands of

vehicles in a single study the visualization options become less of a concern. There is

not a vital need for visualizing each and every combination of FTA or RBD within

a given matrix of alternatives. For this reason, the exploration of previous tools for

use in the CONTRAST approach was terminated.
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3.7.1.2 Automatic Generation of FTA and RBD

After eliminating the previous FTA and RBD tools from consideration an approach

was needed for automatically generating the analyses. A custom approach was pur-

sued because only simple FTA and RBD analyses will be required. This approach

was deemed appropriate because the FTA and RBD equations can be operated on

directly for such simple analyses. Therefore, the simple FTAs and RBDs within the

CONTRAST method can be handled by assembling their equations.

In order to automatically assemble FTA and RBD equations an object oriented

approach was taken based upon a defined matrix of alternatives. As discussed in

Section 3.8 a morphological matrix will be used to define the vehicle concepts to be

analyzed by the method. From this matrix an FTA or RBD equation needs to be

generated for the vehicle architecture that has been selected.

The object oriented approach utilized two classes defined in the Python coding

language. The two classes allow for the definition of each matrix row as an object and

each specific component as an object. The class structures used in the CONTRAST

method can be found in Appendix A.

In order to generate the FTA and RBD equations, the following process is taken

within the Python code. First, each row of the defined matrix of alternatives is defined

as a MOArow object. These objects possess attributes including the row name,

number of options, list of options, row type, relationships, and dependencies. There

are three row types utilized in the MOArow class; relation, numeric, and component

select.

The relation type represents a matrix row that will change the parameters used

by the FTA and RBD logic gates. For example, a matrix row for engine out may

give an option such as n - 1 out of n. If this option is selected, FTA and RBD

equations must be set up to be 2 out of 3 or 3 out of 4 depending upon the number

of engines selected. Therefore, the relation type essentially defines the relationship
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between identical components.

The next row type is the numeric type. This row type is very simple and defines

how many of a certain component will be used in the vehicle. An example of this type

is the number of engines row, which may contain multiple options from 2 to 5. The

numeric type defines how many instances of the specific component will be included

in the FTA or RBD equation.

The final row type is the component select type. This type simply identifies the

specific component to be used in the system. An example of this type is an engine

selection row with options representing specific existing engines such as the SSME or

RL-10. Following along with the previous example of number of engines, this row type

will define the specific component object to be used in the FTA or RBD equation.

The next step in the code is to define all of the specific components within the

matrix as component objects. The component class structure can be seen in Appendix

A. Multiple different methods are defined within this class, which will be utilized later

when performing the reliability growth calculations. Attributes within this class are

defined in order to support the generation of the assumptions for the growth models.

After defining the component and row objects along with their dependencies an

Entry function is called, which generates the FTA and RBD equations. This function

assumes that each component will have its own “entry” within the FTA and RBD

equation. In other words, the top level event in an FTA is connected to a number

of entries that is equal to the number of components within the defined vehicle.

Depending upon the relation and numeric rows defined in the matrix for the given

component, the equation within the entry is adjusted accordingly. For example, if the

SSME is chosen within the matrix of alternatives an entry for the SSME component

will be created. If number of engines is selected as three and no engine out is selected,

the entry for the SSME component will be generated as the cube of the individual

engine reliability.
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Following the generation of the entries within the FTA and RBD equations the

overall reliability can be evaluated. This is carried out by assigning the reliability

values of each component to their respective entries within the overall equation. The

equation can then be evaluated, giving the system reliability.

3.7.1.3 Selection of FTA or RBD

After implementing an automatic generation code for both FTA and RBD, a test is

needed in order to select a technique for application within the method. As discussed

in Section 3.6 the chosen technique needs to be flexible enough to handle many differ-

ent launch vehicle concepts, while allowing for rapid evaluation of each concept. Due

to the similarity between FTA and RBD, the flexibility criterion is of little concern.

Each of the techniques can easily represent very complex system diagrams. Therefore

they are considered to be exactly the same in terms of flexibility.

The only remaining metric from Section 3.6 is the evaluation time of both tech-

niques. This will require a test of the FTA and RBD generation code discussed above,

which will identify any differences between the two techniques. In order to carry out

this test a representative matrix of alternatives is required. This matrix will give

the generation code a variety of vehicles in order to test the automatic generation

capabilities of both FTA and RBD.

Table 10 shows the matrix of alternatives that was generated for Experiment

3. This matrix contains options that are representative of a typical launch vehicle

morphological matrix. The representative matrix of alternatives also includes options

for redundancy and engine out, which will test the ability of the generation code to

put together more complex FTA and RBD equations.

126



www.manaraa.com

Table 10: Representative launch vehicle matrix of alternatives

Avionics Redundancy Yes No

Power Redundancy Yes No

Number of Boosters 0 2 4

Number of Engines 2 3 4 5

Engine Type Engine 1 Engine 2

Engine Out None n-2 out of n n-1 out of n

As can be seen from Table 10 a launch vehicle concept generated by this matrix

will contain four components. These components include avionics, power, engine,

and booster with the engine component allowing for a choice between two options.

In an actual study these engine options may be specific existing engines, such as the

SSME or RL-10 or generic engines representing a new development program. The

redundancy and engine out options in the matrix represent relational row types, which

will determine the structure of the FTA and RBD equation entries for the avionics,

power, and engine components.

For definition of the component objects, basic assumptions regarding the reliabili-

ties of the components will be used. These assumptions are not critical to the testing

being carried out because this experiment is more interested in the generation of the

FTA and RBD equations than the value of the output. The value of the output will

only be considered if a major difference is seen between the output of the FTA and

RBD equations.

In addition to the basic component reliability, a common cause failure (CCF)

probability will be included in the assumptions. This probability will be introduced

when redundancy or engine out is selected. The common cause failure probability

will represent the case in which all of the redundant components fail simultaneously.

The assumptions used in Experiment 3 for the component reliabilities and common

cause failure probabilities can be seen in Table 11.
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Table 11: Component reliability assumptions for Experiment 3

Component Reliability CCF Probability

Avionics 0.999 0.0005

Power 0.999 0.0005

Engine 1 0.0998 0.001

Engine 2 0.0996 0.002

Booster 0.99 0.0001

To complete Experiment 3 all of the possible combinations of vehicles from Table

10 will be selected and an FTA and RBD will be generated for each. Using the

assumptions from Table 11 the FTA and RBD equations will be calculated for each

vehicle concept and the result will be tabulated.

It is expected that the required run time for both of the techniques will be nearly

identical because of the simplicity of the equations. Another expectation for Experi-

ment 3 is that there will be little to no difference in the reliability outputs from FTA

and RBD. This is expected because the techniques are very similar to one another.

The only difference between the two techniques is that FTA is failure oriented while

RBD is success oriented.

If the above expectations hold hypothesis 4 cannot be accepted or rejected based

upon this experiment. This is because Experiment 3 will show that there is no

difference between FTA and RBD, which means that the selection of a technique is a

matter of preference. If the expectations do not hold and there is a difference between

FTA and RBD in terms of run time or output, then hypothesis 4 can be accepted or

rejected based upon the experiment outcome.
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3.7.2 Experiment 3 Results

Using the class definitions given in Appendix A and the assumptions in Table 11,

Python script was run in order to generate the FTA and RBD equations for all of the

vehicles in Table 10. In total, 288 vehicle architectures were run, which required only

0.062 seconds of runtime. This runtime was divided evenly between the FTA and

RBD generation scripts. Table 12 lists the run times of the script when generating

both FTA and RBD equations simultaneously, only FTA equations, and only RBD

equations. As expected the runtime for the FTA and RBD generation code is exactly

equal.

Table 12: Runtime required to generate 288 reliability equations

Generation Runtime (s)

FTA and RBD 0.0619

FTA only 0.03095

RBD only 0.03095

Since the runtime is exactly equal, the output of the analyses will be considered

to see if there is any appreciable difference between FTA and RBD. Figure 27 below

shows a distribution of the absolute value of the differences between the FTA output

and the RBD output for all 288 vehicle architectures. It is interesting to note that 12

of these cases present a difference of 0.00016. This difference is not large, but because

we are considering reliability a difference in the fourth digit is worth investigation.

After further investigation, all 12 of the identified architectures were found to

contain 5 engines with no engine out capability. In calculating the reliability from the

engine entry within the FTA and RBD equations it can be shown that the difference

seen in Figure 27 is due to rounding error. The FTA and RBD equations for these
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cases can be seen below, with the engine reliability equal to 0.996.

RFTA = 1− (1−REngine) ∗NEngines (24)

RRBD = R
NEngines
Engine (25)

After plugging in the engine reliability as 0.996, the FTA equation gives a reliability

of 0.98 while the RBD equation results in a non-rounded number of 0.980159. This

ultimately explains the difference of 0.00016 that can be seen in Figure 27.

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016
100.0%
99.5%
97.5%
90.0%
75.0%
50.0%
25.0%
10.0%
2.5%
0.5%
0.0%

maximum

quartile
median
quartile

minimum

0.00016
0.00016
0.00016
0.00005
1.67e-5
5.99e-6
9.95e-7
1.88e-9

0
0
0

Quantiles

Figure 27: Difference between FTA and RBD reliability predictions

In Section 3.7.1.3 the expectations for Experiment 3 were discussed. These expec-

tations were that the FTA and RBD approaches would be effectively identical after

implementing the object oriented approach for generating the reliability equations.

Table 12 and Figure 27 confirmed these expectations, showing that the runtime and

reliability output of both the approaches are identical. The only exception is the iden-

tification of slight differences in the reliability output due to rounding errors within

the code.

Due to the fact that the techniques cannot be differentiated, hypothesis 4 cannot

be fully accepted or fully rejected. Ultimately the decision between FTA and RBD

comes down to preference. Both of the methods will produce the same reliability
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output for the same vehicle architecture. The FTA method will therefore be chosen

for application in the CONTRAST method.

The primary reason for this selection is based on the reliability growth model that

was selected following Experiment 1. The growth model to be used in the method

operates with assumptions pertaining to the number of failure modes and probability

of occurrence of each of the modes. These assumptions fall directly in line with the

failure oriented FTA approach. Within the FTA each entry can be considered a

“failure mode” with the probability of failure equal to the probability of occurrence

from the growth model. This alignment will be beneficial for the future application

of the CONTRAST method.

3.8 Vehicle Architecture Definition

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

The completion of Experiment 3 finalized the definition of the analysis steps within the

generic reliability and safety based decision-making process. Only one step remains to

be addressed, Problem Definition. Recall that this step represents multiple different

sub-tasks, which include establishing the need, establishing value, and defining the

alternatives. The Problem Definition step will therefore require the definition of the

metric of interest (LOM, LOV, LOC) as well as the general trade space to be explored.

Within this trade space the specific vehicle options need to be identified, which will be

fed into the reliability and safety analysis. Since the general trade space and metric of

interest definitions will vary from project to project, only the technique for generating

vehicle architectures for analysis will be considered.

There are two primary options for defining these vehicle architectures. The first

option is the trade tree, which is a graphical decomposition technique. The trade tree

decomposes the system either functionally or physically into a tree of parameters that
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are analyzed sequentially [116]. Due to the sequential analysis involved with trade

trees, care must be taken in setting up the tree. As decisions are made going down

the tree, other branches will be “pruned” or eliminated from consideration [116]. For

this reason, the order of decisions being made is very important to the successful

application of the trade tree technique. The setup time needed for a trade tree is

thus much greater than other techniques. It requires a well thought out process to

produce the order as well as all of the individual branches in the tree.

The second option for architecture definition is morphological analysis. Morpho-

logical analysis was developed in the 1940’s as a method for assessing patterns in

an orderly manner [179]. It utilizes a matrix of alternatives (MOA) to represent

the physical or functional decomposition of the system [168]. In this technique the

order of alternative selection does not matter, which means that any component of

the architecture can be selected first. This benefit allows the analyst to avoid un-

intentionally eliminating options that may be desirable, which is a possibility when

utilizing trade trees.

Morphological analysis also benefits from recent improvements to the MOA. One

such example is the Interactive Reconfigurable Matrix of Alternatives (IRMA). An

IRMA is an advanced MOA that includes compatibility information in the primary op-

tions table [168]. As the analyst makes architecture selections, the remaining options

are highlighted based upon any incompatibility with the currently selected options.

This example shows the additional capability of the MOA to store design metadata,

which can be called upon when an option is selected. The ability to store such data

may hold an added bonus for facilitating automatic generation of vehicle fault trees.

Morphological analysis was chosen for application in the CONTRAST method

after a comparison of the two architecture definition techniques. Morphological anal-

ysis offers many more benefits than trade trees; however, it is important to note that

either of the methods could be used for the initial vehicle definition. The selection of
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the technique is a matter of preference that will not affect the output of the method.

Architecture definition was not posed as a research question in this case because it

was considered to be beyond the scope of the research objective. A majority of this

research will address the assessment of the expected reliability of a vehicle concept,

which is independent of how the concept was initially generated.

3.9 Research Question 5: Reliability Growth Model As-
sumptions

The selection of a matrix of alternatives approach for generating vehicle architec-

tures concluded the first pass through the generic steps of the reliability and safety

based decision-making process. At this point the primary components of the CON-

TRAST method have been identified. However, additional research questions are

required to address specific details for method application. The first of the additional

research questions addresses the production of the assumptions for the reliability

growth model.

Research Question 5

How can the reliability growth assumptions be produced at the

subsystem level?

The primary motivation behind research question 5 is the growth model accuracy,

which is directly affected by the traceability of the assumptions. If the model assump-

tions are not traceable, the output of the method will also be easily discreditable. In

order to address research question 5, the assumptions required by the growth model

identified in Section 3.3.2.3 will be considered first.

The Hall growth model contains three primary assumptions; number of failure

modes, probability of occurrence, and fix effectiveness factor. The first assumption,
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number of failure modes, is simply the number of events that can cause the top

level event of interest such as LOC or LOM. The second assumption provides the

probability of occurrence for each of these events, which is typically defined using

some form of continuous distribution. As discussed in Section 3.3.1.5, Hall suggests a

Beta distribution to define the probabilities of occurrence. The third assumption, fix

effectiveness, accounts for potential design fixes that will be implemented throughout

the vehicle’s life-cycle. This parameter represents the reduction in probability of

occurrence for a given failure mode if that mode were to occur. A value of 1 represents

the complete elimination of the mode from the system, while a value of 0 means that

no fix was implemented.

After considering the required reliability growth assumptions, multiple approaches

for generating them can be identified. Three primary options exist for generating the

assumptions; subject matter expert input, parts count method, and failure mode and

effect analysis. The latter two options are pre-existing reliability methods that were

discussed in Sections 3.2.1.2 and 3.2.1.3. Comparison to previous systems could be

considered an additional option for producing the growth assumptions. However, all

three of the approaches will rely upon historical data of some sort. For this reason,

comparison to previous systems was not identified as its own approach for generating

the reliability growth assumptions.

The first option for producing the growth model assumptions is to use subject

matter expert input. This option equates to an “ask the expert” approach, which

involves setting the assumptions based upon engineering judgment. To apply the

SME input option, a SME in each subsystem area would need to be identified. Based

upon prior knowledge and experience the SME in each field would then generate the

growth assumptions for each subsystem under consideration.

In terms of traceability of the assumptions, this option is considered to be behind

FMEA and parts count. The primary reason for this is that the SME input process is
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much less structured. While gathering the SME input there is no guarantee that the

SME’s polled are qualified to make the assumptions for each subsystem. In addition,

the reasoning or previous knowledge used by the SME to generate an assumption is

not captured. Therefore, the traceability of the assumptions can typically boil down

to ”Expert A said it, therefore it must be true”, which is undesirable.

The SME input option is less traceable but it is not necessarily the worst option

for all of the reliability growth assumptions. For the first two assumptions, which

are easily quantifiable using the right data, this approach is the worst in terms of

traceability. However, the third assumption is set up fairly well for an SME based

approach. This is because in practice, the fix effectiveness factor is very difficult to

quantify.

As stated earlier, the fix effectiveness factors represent the amount of reduction

seen in the probability of occurrence of a given failure mode. In order to quantify

these values failure modes for a system would need to be tracked both before and after

fix attempts are made during the vehicle life-cycle. This implies that the probability

of occurrence of the mode can be calculated prior to the fix and the new probability

of occurrence can be observed after the fix. The fix effectiveness factors will also

be affected by non-quantifiable parameters such as the rigor of the test and redesign

process or the specific failure reporting and correction methods the program will

employ. The SME input method would be well suited to predict the fix effectiveness

factors for this reason. The SME’s will be able to apply their knowledge of the

test-fix-test process to help quantify the fix effectiveness.

The next option for reliability growth assumption generation is the parts count

method, which was discussed in more detail in Section 3.2.1.2. This method begins

with identification of the individual parts that make up the system being analyzed.

In other words, considering the levels of characterization from Section 3.3.2.2, PCM

counts the number of items in the level just below the level of analysis. For example, if
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the PCM approach is being used for a subsystem, all of the major assemblies will need

to be identified. To determine the system reliability, each identified part is assigned

a reliability value. Typically these values are simply multiplied across all the parts in

order to estimate the system reliability.

The parts count method is particularly well suited for the number of failure modes

assumption in the Hall model. Carrying out the parts count method at a given level

of characterization will result in a list that is analogous to the number of failure

modes at that level. The number of failure modes at a given level can be equated to

the number of events at the next lowest level in an event tree. It is expected that

the failure of each part counted by PCM would show up in that event tree. This is

especially true when considering top level events such as LOC. An LOC event can

usually be tied to a catastrophic failure of some sort. Each of the parts identified

using PCM will most likely have at least 1 catastrophic failure mode, resulting in an

equivalent number of events linked to the top level.

For the second and third assumptions the parts count method is less desirable.

Although PCM does account for the probability of occurrence through the assigned

reliability values for each part, it can be considered nearly the same as the SME input

option. The reliability values for the parts in PCM can be generated using analysis,

but they are typically generated using comparisons to previous systems. Another

approach for assigning reliability values in PCM is simply to “ask the expert”, which

is the same as SME input.

The final option for assumption generation is the use of an existing reliability tech-

nique, failure mode and effect analysis. The FMEA approach was discussed in detail

in Section 3.2.1.3 and involves identifying and tabulating all failure modes within a

given system along with their effects and criticality. The FMEA worksheets are there-

fore well suited to producing all three of the reliability growth model assumptions.

The first growth assumption is addressed directly by FMEA because its goal is to
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produce a comprehensive list of failure modes for the given system. This assumption

can be made very easily and traceably utilizing an FMEA worksheet. However, it is

important to note that the FMEA worksheets contain more detail than is required.

Since the goal of FMEA is to identify all potential failure modes, there will be many

modes within the full worksheet that do not directly map to the top level event of

interest. This is especially true in systems that utilize redundancy or fault detection

and correction. Both of these techniques will reduce the number of part or component

failure modes that will lead directly to the top event. If FMEA is to be utilized for

production of the reliability growth assumptions, some simplifications of the work-

sheet may be required. This is due to the amount of time required to produce a

comprehensive FMEA worksheet for a complex system.

The next assumption to consider is the probability of occurrence of the failure

modes. This assumption is addressed by FMEA if the worksheet includes criticality,

which is referred to as FMECA or failure mode, effect, and criticality analysis. The

criticality values are typically split into different categories from minor to catastrophic

[40]. In addition, the failure modes can be assigned a probability of occurrence in

either qualitative or quantitative form. The qualitative probability of occurrence scale

assigns the modes to one of five levels ranging from extremely unlikely to frequent

[40]. The quantitative probability of occurrence is appropriate only when a source is

available for failure rate data. Even if the qualitative scale is used, the probability of

occurrence for each mode could be estimated using the FMECA worksheet.

The third growth assumption, fix effectiveness factor, is also indirectly addressed

within FMEA. As shown in Figure 10 in Section 3.2.1.3, the FMEA worksheet contains

columns for failure detection methods and compensating provisions. The first of these

columns simply captures the techniques that are applicable for detecting the given

failure mode. The second column allows for the identification of options for preventing

or reducing the probability of occurrence for the failure modes. These columns could
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be used to qualitatively assign values for the fix effectiveness factors. If a given

failure mode has many detection methods as well as many options for prevention, its

fix effectiveness factor will likely be high. On the other hand, if a given mode has no

detection or prevention options its fix effectiveness factor will be much lower. The

only issue with utilizing FMEA for qualitatively assessing the fix effectiveness factors

is the amount of time required to fill in these columns. For all of the failure modes in

the worksheet, options for detection and prevention or correction must be explored,

which can be very time consuming for a complex system.

After considering all three options for generating the reliability growth model

assumptions, a few key observations can be made. The first of these observations is

that none of the identified options are a clear cut choice to produce all three of the

growth model assumptions. The SME input option seemed to be applicable only to

the third assumption, while the PCM and FMEA options were better suited for the

first and second assumptions.

The second observation is in regard to the benefits of using FMEA. First, FMEA

can be considered the most traceable of the identified options. This is because FMEA

is a very standardized and structured process, where as SME input and PCM are

not. The FMEA process is also expected to benefit the most from historical data

stemming from the design work of previous programs. The FMEA worksheets can

be “living” documents that are iterated upon as the program progresses through the

design process. This means that FMEA data from previous systems may exist even

if the program was canceled prior to operations.

Based upon these observations, two use cases can be identified to address research

question 5. The first is the case where FMEA data is available from a previous

system that is deemed similar to the new system. In this case, the FMEA option is

the most appropriate for generating the number of failure modes assumption as well

as the probability of occurrence assumption. Both of these assumptions can be made
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based upon previous data, which is considered more traceable than the other options.

As discussed above, the SME input approach is the most well suited for the third

assumption, fix effectiveness factors. Due to the fact that this assumption is difficult

to quantify in practice, it has been deemed acceptable for SME input to generate the

fix effectiveness factors.

The second case for research question 5 occurs when FMEA data from a previ-

ous system is not available for comparison. In this case a full FMEA for the new

system may require a significant time commitment, which will be impractical when

considering a large architecture space. As mentioned above, the PCM approach can

serve as a very quick method for identifying the key failure modes within the system.

Therefore, in the case where previous FMEA data is not available the PCM approach

can be used to generate the initial list of failure modes.

In the absence of reliability data, the probability of occurrence values for the failure

modes from PCM must be assumed in a generic fashion. The literature regarding the

development of the reliability growth model selected in Section 3.3 gives suggestions

regarding the probability of occurrence distributions. For the second case, the generic

assumptions from the literature will be applied in lieu of actual data. This approach

will ultimately be tested during the example problem in Section 4.2 to ensure its

validity. The final assumption for the second case can then be determined using the

SME input approach.

The traceability of the assumptions for the growth model is of utmost importance

to the accuracy of the resulting reliability estimates. A FMEA approach was identified

as the most traceable method for producing the growth assumptions, however, it has

shortcomings in terms of time required to complete the analysis. With traceability

in mind, the FMEA approach was chosen as the backbone for the production of the

growth assumptions, which will be augmented with two other techniques. The two

cases identified above for research question 5 have been developed to provide rapid yet
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traceable assumptions for the growth model chosen in Section 3.3. This will preserve

the defensibility and the accuracy of the resulting reliability estimates. From the two

cases above a two part assertion to research question 5 was developed.

Assertion to Research Question 5

• If detailed data from a previous, similar system exists, then the

number of failure modes and probability of occurrence assump-

tions can be generated based upon this data with the fix effec-

tiveness factors coming from SME input.

• If detailed data from a previous, similar system does not exist,

then the number of failure modes assumption can be rapidly esti-

mated using the PCM approach and the probability of occurrence

distribution must be assumed to represent a generic complex sys-

tem. The fix effectiveness factors can be generated using SME

input.

3.10 Research Question 6: Application of Growth Curves
to a Fault Tree

The second additional research question is in regard to the application of subsystem

growth curves to the system level fault tree. As discussed in Section 3.6 the growth

model will be used at the subsystem level and the system level reliability will be

generated using FTA or RBD. There are multiple different approaches that can be

used to apply the subsystem level growth curves to an FTA or RBD. Research question

6 was posed to address this issue for future applications of the method.
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Research Question 6

What method is most appropriate for applying subsystem reliability

growth curves to a system level fault tree?

To address research question 6, three candidate options can be identified. The

first option is to anchor all of the subsystem reliability growth curves at equivalent

flight 0. With this approach, each step in time at the system level equates to the

same step in time at the subsystem level. For example, to calculate the system level

reliability at equivalent flight 0, the reliability distributions for equivalent flight 0 for

each subsystem will be used. Similarly, the system level reliability at equivalent flight

100 will be calculated using the reliability distributions for equivalent flight 100 for

each subsystem.

The second option for research question 6 is to step through the individual sub-

system reliability growth curves based upon assumed failures. At each step in time

the probabilities of failure could be used to evaluate which subsystems operated suc-

cessfully or failed. If a subsystem was said to be failed, its growth curve would be

incremented by a single flight. This increment would represent the improvement in

reliability after the failure was identified and corrected. To evaluate the system level

growth using this option another MC would be required.

The final option is to anchor each subsystem growth curve at an initial point based

upon an assumed test or flight schedule. With this option an assumed test schedule

would be used to set the initial point for each subsystem. For example, liquid rocket

engines may undergo 50 missions worth of hot fire testing, while a solid rocket booster

may only undergo 15. In this case the system level reliability estimate at equivalent

flight 0 would use the reliability distributions at flight 50 and 15 for the liquid engines

141



www.manaraa.com

and solid rocket booster, respectively.

This option can also be applied in the case where unique development programs are

started at different points in time. For example, a liquid engine development program

may be assumed to start at the initiation of the program, while development for an

advanced solid booster may begin much later. In this case the growth curve for the

liquid engine will be anchored at equivalent flight 0 while the growth curve for the

advanced booster may be anchored at equivalent flight 50 or 100. Applying the second

option in this manner will be of use when considering a block upgrade approach for

vehicle development. The relevance of this approach for considering block upgrades

will be discussed in more detail in Chapter 5.

To evaluate the three options identified above, a set of selection criteria is needed.

Since research question 6 affects the process of the CONTRAST method it requires

similar considerations to research question 5. First, the prediction accuracy of the

chosen option is of utmost importance. In order for the method to achieve success, it

must be able to produce accurate results. Therefore, accuracy is an obvious candidate

as a selection criterion for research question 6.

Next, the evaluation time of the selected option is also an important consideration.

The number of concepts being evaluated has a great effect on the overall run time of

the method. Thus the option chosen here will need to have an acceptable evaluation

time.

Finally, data availability is also applicable to research question 6. The third option

will require estimates for test and flight schedule of the vehicle being analyzed, which

implies the use of outside data. Therefore, data availability will be added as the third

selection criterion.

After identifying three selection criteria, the options for research question 6 can be

compared. The first option, anchoring all growth curves at flight 0, is the simplest of

the three. This option requires no additional data or changes to the implementation
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of the fault tree analysis. Therefore, option one is considered the most desirable

in terms of data availability as well as evaluation time. However, the accuracy of

the output may be affected by using this option. For actual development programs

it is very rare for all of the subsystem developments to occur simultaneously. This

means that anchoring all of the growth curves at flight 0 may not be an accurate

representation of reality.

The second option for research question 6 is expected to require the longest eval-

uation time of the three identified options. At each step in time option 2 requires

a MC run to evaluate which specific subsystems were assumed to have failed. This

requirement will greatly increase the run time of the method, especially when many

increments in time are required. Similar to option 1, option 2 will benefit from avoid-

ing the use of outside data. It therefore performs better than option 3 against the

data availability criterion. However, the second option may have issues with predic-

tion accuracy. Since this option would require many MC runs at each step in time, it

is expected that the distributions produced by this approach would have very large

variances. These distributions may have large enough ranges such that the compar-

isons between vehicles become meaningless. The second option is thus considered as

the worst in terms of accuracy.

The final option requires the development of an estimated test or flight schedule

for the vehicle being analyzed. The addition of schedule would require some outside

data in order to complete the analysis. Therefore, data availability issues may arise

when using this option. However, the use of an estimated test or flight schedule

would relieve some of the inaccuracies seen in the first option. If a schedule could be

produced, all of the subsystem growth curves could be shifted to their appropriate

initial values. This would result in better prediction accuracy than option 1. However,

the third option fares worse when considering the evaluation time criterion. Due to

the requirement of an assumed test or flight schedule, the amount of time to set up
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this option increases. The generation of the schedule will require additional time for

data collection, causing this option to have a longer evaluation time than option 1

and option 2.

In comparing the three options for research question 6 across the identified se-

lection criteria, it was concluded that option 1 is the most appropriate. Option 1 is

expected to perform the best in two of the three selection criteria. The prediction

accuracy is a potential issue, but with careful setup of the analysis it is expected that

any issues can be mitigated.

Hypothesis 6

If all subsystem growth curves are anchored at equivalent flight 0, the

resulting system level growth curve can be produced without

increasing evaluation time or encountering data availability issues

while maintaining an acceptable prediction accuracy.

3.11 Experiment 4

Following the development of the options for research question 6, a test is required to

either accept or reject hypothesis 6. This test will examine the application of each of

the options in more detail. In order to facilitate the selection of the best option for

application in the CONTRAST method, three criteria were derived in Section 3.10.

These criteria are prediction accuracy, evaluation time, and data availability.

The first criterion for Experiment 4 is the prediction accuracy of the selected

option. This criterion refers more to the capture of the desired reliability growth

trends than the numerical result. The numerical results should be very similar since

each of the options in Experiment 4 will utilize the same failure mode assumptions
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for the reliability growth models. The prediction accuracy criterion will be evaluated

based upon the observed output of each option. The research objective is to produce

a method that can project reliability of launch vehicles from program initiation to

maturity. Therefore, reliability growth results that show the expected initial reliability

of the vehicle at program inception along with the entire growth curve up to vehicle

maturation are desired.

In addition to the qualitative assessment of the prediction accuracy in Experiment

4, each of the options will be applied during the example problem in Section 4.2. This

will allow for a quantitative comparison of the errors for each option when compared to

real launch vehicle data. This exercise will further support the conclusions regarding

hypothesis 6, which will be developed in the results section for Experiment 4.

The second criterion for Experiment 4 is data availability, which will assess the

amount of outside data that is required for setup of each of the options. For option 3

this data includes the assumed test or flight schedule, while for option 2 it represents

additional information and setup required for time incrementing in the model. This

criterion was selected in order to compare the data requirements of each of the options.

Reliance upon less outside data is considered to be a positive in this case because there

will be less opportunity for introducing errors into the model.

The final selection criterion, evaluation time, can be assessed simply by running

the models for a set of vehicle architectures. This criterion was selected because of

its importance to the future application of the CONTRAST method. When carrying

out trade studies on very large architecture spaces the evaluation time of the model

will limit the total number of vehicles that can be evaluated. This ultimately traces

back to the original requirements that were laid out with the research objective.

To execute Experiment 4, the chosen growth model from experiment 2 will be

setup first using the Python coding language. After setup of the growth model, an

FTA will be generated for each vehicle being analyzed. Following the generation
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of the FTA, the reliability growth model will be run using each option for research

question 6. The results of the model run will then be used to evaluate the accuracy

and evaluation time criteria.

3.11.1 Experimental Setup

In order to test the three options for research question 6, a representative matrix

of alternatives must be generated. This matrix will include many different notional

launch vehicle architectures and will help test the required evaluation time of each

option. For the entire set of vehicle architectures in the matrix each of the options

for research question 6 will be used to generate a reliability growth estimate. These

estimates can then be used to assess the evaluation criteria that were defined above.

The previous experiment developed a representative matrix of alternatives, which

was presented in Table 10. This matrix can be reused for Experiment 4 because it

contains a sufficient number of vehicle architectures to test each option. In all, 288

unique architectures can be generated from Table 10.

The reliability growth assumptions for each of the subsystems within the matrix

of alternatives must be developed. The first subsystem to consider is the solid rocket

booster. This booster will be assumed as similar to the solid rocket boosters that were

used on the STS. For each booster a more detailed list of high level failure modes can

be identified, which is shown in Table 13. From this generic list the number of failure

modes assumption for the solid booster was set to 6.
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Table 13: High level Space Shuttle SRB catastrophic failure modes

Mode Explanation

Case joints Rupture of the joints between segments

Thrust vector control Failure to properly align thrust from each booster

Ignition Failure of ignition system causing uncontrolled burn of

propellant

Separation Failure to separate from the external tank

The next subsystem to consider is the liquid rocket engine. In the representative

matrix of alternatives two engine options are given in order to represent unique engine

types. The first engine will be assumed to be a gas generator, which is a common cycle

due to its relative simplicity [156]. The second engine will be assumed as a staged

combustion cycle, which is more complex. This engine is assumed to be similar to

the SSME.

The SSME is a staged combustion cycle engine, which utilizes dual turbopumps

for both the fuel and oxidizer [133]. Key components in addition to the turbopumps

include the fuel and oxidizer pre-burners, main combustion chamber, nozzle, and

thrust vector hydraulics. Using this list, Table 14 was generated to identify the high

level catastrophic failure modes for the SSME. Since engine 1 is assumed as a less

complex option it will be assumed to contain only a single turbopump each for the

fuel and oxidizer. This results in 7 failure modes for engine option 1.
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Table 14: High level SSME catastrophic failure modes

Mode Explanation

Fuel turbopump (2x) Failure of the low or high pressure pumps to provide fuel

flow

Oxidizer turbopump (2x) Failure of the low or high pressure pumps to provide

oxidizer flow

Fuel pre-burner Failure to ignite or uncontrolled burn of propellant

Oxidizer pre-burner Failure to ignite or uncontrolled burn of propellant

Combustion chamber Uncontrolled or unstable burn of propellant

Thrust vector control Failure to direct engine to desired angle

Nozzle Loss of integrity of nozzle structure or failure of heat

exchanger

The next vehicle subsystem to consider is the power subsystem. This subsystem

may include key components such as fuel cells or batteries, auxiliary power units,

power distribution, and power conditioning units [92]. For Experiment 4 a list of four

primary modes were identified for the power subsystem. These modes can be seen in

Table 15.

The final vehicle subsystem to consider is the avionics subsystem. Launch vehicle

avionics subsystems can be very complex and typically include the flight computers

(hardware and software), data handling and processing, and instrumentation (flight

controls, sensors, etc.) [92]. For the generic vehicle setup for Experiment 4 a list of

six high level failure modes have been identified for the avionics subsystem. Table 16

lists these modes.
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Table 15: High level power subsystem catastrophic failure modes

Mode Explanation

Power source Failure of the primary power source to provide adequate

power

Auxiliary source Failure of secondary source to provide adequate power

Power conditioning Failure to condition the output power to appropriate

voltage for vehicle systems

Power distribution Failure to distribute power to vehicle systems

Table 16: High level avionics subsystem catastrophic failure modes

Mode Explanation

Flight computer(s) hardware Physical failure of flight computer hardware

Flight computer(s) software Failure of flight computer software causing loss of

guidance and navigation

Data handling and processing Failure to successfully process vehicle information

leading to abort or vehicle destruct

Flight controls Failure to provide required control inputs or total

loss of vehicle control

Sensors False indication of off nominal conditions leading

to abort or vehicle destruct

Data distribution Loss of linkages between flight computer and con-

trol actuators or other critical systems
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After completing the number of failure modes assumptions, two growth model

parameters remain. These parameters are the probability of occurrence of the failure

modes and the fix effectiveness factors. First, the fix effectiveness factors will be set.

As discussed in Section 3.4 the fix effectiveness factors for Experiment 1 were

set based upon values given in the literature from Hall and Morse. The fix effec-

tiveness values will ultimately depend upon the details of the vehicle development

program, which includes the implementation of rigorous post flight data analysis,

failure reporting techniques, and failure prevention and review boards. Based upon

what techniques are applied for the system the fix effectiveness factors are expected

to change.

Due to the fact that Experiment 4 is modeling notional vehicles a single set of as-

sumptions will be used for the fix effectiveness factors across all of the vehicles. This

is based off of the assumption that each of the vehicle concepts would be developed

by the same organization utilizing the same failure prevention and reporting tech-

niques. The fix effectiveness factors for this experiment will therefore be modeled as

uniform distributions ranging from 90 % to 99 %. Next, the probability of occurrence

assumptions will be set for both the system and subsystem level.

The system level probabilities of occurrence were addressed previously during

Experiment 1 in Section 3.4. In this section multiple different sets of Beta distribution

parameters were given from the literature for the growth models. Since Experiment 4

is considering notional vehicles and the goal of the experiment is to compare output

from vehicle to vehicle, a set of parameters will be selected that will be used for all

vehicles. This will enable more direct comparisons between different vehicle concepts.

The system level probability of occurrence assumption, therefore, will be based upon

the same Beta distribution as in Experiment 1. This distribution has the parameters

α = 0.22 and β = 8.75. For the subsystem level, new parameters must be calculated

based upon the system level distribution.
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In order to calculate the subsystem level probability of occurrence assumptions

the system level probability of occurrence along with the number of failure modes at

the subsystem level must be utilized. This will be done in order to ensure that the

assumed subsystem probabilities of failure will match the calculated probability of

failure based upon the identified subsystem failure modes. For example, consider the

power system assumptions from above. The system level growth model will assume

that a power subsystem failure will occur with the probability of failure distributed

as Beta(0.22, 8.75). At the subsystem level, four primary modes were identified that

lead to the power system failure. The probability of occurrence of these modes must

be defined such that the resulting probability of power system failure is approxi-

mately distributed as Beta(0.22, 8.75). Therefore, the following equation will hold

for determining the distribution for the probabilities of occurrence at the subsystem

level:

psystem = p1 + p2 + p3 + ...+ pn (26)

where, psystem is the probability of occurrence of the system failure distributed as

Beta(0.22, 8.75) and p1, p2, ...pn represent the probabilities of failure of the subsystem

failure modes distributed as Beta(α, β). The parameters for the Beta distribution

of the probabilities of occurrence for the subsystem failure modes can be solved for

numerically. This was carried out by picking the parameters α and β and drawing

n probabilities of failure from Beta(α, β) to give values for psystem. A fit was then

produced to the values of psystem, which was compared to the original distribution

Beta(0.22, 8.75). The process was repeated until convergence upon this distribution

was achieved. A more detailed explanation of the probability of occurrence distri-

bution derivation is given in Appendix C. Table 17 contains a list of the final Beta

parameters for each of the subsystem probabilities of occurrence.
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Table 17: Reliability growth assumptions for Experiment 4

Component # Modes Beta Parameters

Avionics 6 0.0421, 10.04

Power 4 0.08, 12.1

Engine 1 7 0.046, 12.03

Engine 2 9 0.0313, 11.08

Booster 6 0.0421, 10.04

After identifying the vehicle architectures and component reliability assumptions

for the subsystems, the assumptions for the development schedule are needed. These

assumptions will be used in option 3, which anchors all of the subsystems based upon

their assumed first flight. This means that the subsystems that begin development

earlier in the vehicle life-cycle will progress through more testing and reliability growth

than other subsystems that are developed later.

In order to develop these assumptions the history of the Space Transportation

System can be used. The Space Shuttle will be used to produce representative as-

sumptions because of its extensive flight history and availability of program documen-

tation. The assumptions that are needed for option 3 are the assumed first flights

for each of the components defined in Table 17 above. Assuming that the program

begins at equivalent flight 0, the equivalent “first flights” of the components can be

estimated based upon their initial testing dates. The STS program will be sufficient to

provide these assumptions for the avionics, power, booster, and Engine 2 components.

The assumption for Engine 1 will be developed assuming that the engine has been

flown before and benefits from some flight heritage. The first flight for Engine 1 will

therefore be set to equivalent flight 0 with the other components coming thereafter.

The remaining component assumptions can be developed using the STS program

history. The SSME will be used as a surrogate for Engine 2, the SRB for the booster,
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and the orbiter for both the avionics and power subsystems. The estimation of the

equivalent first flights of these components depends upon their timeline for develop-

mental testing. Therefore, a timeline of key events from the STS program is required.

The STS program took shape during the early 1970’s following many reusable

launch vehicles studies tracing back to the mid-1960’s [173]. The Space Shuttle was

first formally endorsed by President Nixon in January 1972 [144]. Following this en-

dorsement the definitive contracts for the orbiter, SSME, and solid rocket boosters

were all signed later in 1972 [173]. The first of these components to be tested was

the SSME, which ran a full ignition test in June 1975 [11]. Two years later in Febru-

ary of 1977, flight testing of the Space Shuttle orbiter began at Edwards Air Force

Base [173]. The beginning of flight testing will be assumed to be equivalent to the

beginning of the testing of the avionics and power subsystems contained within the

orbiter. Following the start of orbiter flight testing the first full scale SRB test was

completed by Thiokol in July 1977 [144]. Finally, the first flight of the STS vehicle

was successfully completed four years later on April 12, 1981 [144].

As can be seen from the previous discussion, the timeline for the STS program

from initiation to first flight was between January 1972 and April 1981. During these 9

years, developmental testing of the various components was completed. To generate

the assumptions for option 3 a new timeline will be assumed based upon the STS

timeline discussed above.

The beginning of the new timeline will start with the first equivalent flight of

Engine 1, which is the assumed “heritage” engine in this case. Since Engine 1 is

assumed to have flown prior to the initiation of the new program it will be anchored

at equivalent flight 0. The beginning of the new program will then be assumed to

occur at equivalent flight 50, giving the heritage engine 50 flights worth of reliability

growth. The remaining components will be set based upon the STS timeline.

As discussed above the SSME was the first component to undergo full testing.
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Therefore, the SSME first flight will be set to equivalent flight 50 on the new timeline.

Details regarding the SSME test program can then be used to place the SRB and

orbiter on the new timeline.

The SSME program was initiated two years prior to the start of testing on the

orbiter and SRB [144]. During this program the engines underwent nearly 100 equiva-

lent missions worth of hot fire testing prior to the first operational launch of STS [11].

This equates to around 20 equivalent missions worth of testing per year of the test

program. With this number in mind a crude estimate for the beginning of the SRB

and orbiter test programs can be obtained. Assuming 20 equivalent flights per year,

the orbiter first flight will fall around 70 on the new timeline. Therefore, the avionics

and power subsystems will be assumed to have a first flight of 70. Since the avionics

system can be considered more “complex” than the power system the avionics will

be assumed to have undergone more testing for the purpose of Experiment 4. Thus,

the avionics first flight will be adjusted to 60 and the power system first flight will

remain at 70.

The final component to consider is the solid rocket booster. As discussed above,

the SRB testing began about 6 months after the beginning of the orbiter flight testing.

Using the simple assumption of 20 flights worth of testing per year, the 6 month

difference equates to approximately 10 additional equivalent flights. The SRB first

flight will therefore be set to 80 on the new timeline.

In order to conclude the first flight assumptions, the new timeline must now be

reversed in order to reflect the appropriate amount of development time for each

component. The timeline will be reversed because the assumed first flight in option

3 is the equivalent flight at the subsystem level at which the first operational flight

of the vehicle is assumed to occur. This means that the heritage engine will have

quite a bit of development time prior to the first operational launch, meaning its

first flight will be set to a high number. The high number for first flight represents
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the amount of testing or previous flight heritage the component has gained prior to

the first operational flight of the new vehicle. Table 18 gives the updated first flight

values that will be used in Experiment 4.

Table 18: Reliability growth assumptions for Experiment 4

Component First Flight

Avionics 40

Power 30

Engine 1 100

Engine 2 50

Booster 20

A few additional assumptions are required to complete Experiment 4. These

assumptions include the fix effectiveness factors, the number of repetitions, the to-

tal number of flights, and the number of steps in time. The fix effectiveness factor

assumptions were addressed in Experiment 1, which can be leveraged for this experi-

ment. Therefore, the fix effectiveness factors will be modeled as a uniform distribution

between 95% and 99% for all of the subsystems.

The total number of flights and the number of steps in time will be chosen to

ensure a long enough flight history without requiring an unmanageable number of

runs. The total flight number was chosen to be 300 flights, which is between the total

flight history of the Soyuz and STS vehicles from Experiment 1. In order to reduce

the total runtime, 60 steps in time will be used, which means reliability results will

be produced at every 5th flight throughout the history.

The final assumption for Experiment 4 is the number of repetitions. This as-

sumption refers to the number of random draws that will be executed at each step

in time in order to produce the system level reliability estimate. As with the previ-

ous assumptions, the number of repetitions is primarily constrained by the required
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runtime. In order to keep the runtime at a reasonable level, 1000 repetitions will be

used. With this number of repetitions along with the 60 steps in time and 288 unique

vehicles, 17,280,000 total runs will be completed using each option for Experiment 4.

After completing the assumptions for each of the options the expectations for

Experiment 4 can be discussed. During the introduction of Experiment 4, three

criteria were identified for testing the options. These criteria are prediction accuracy,

data availability, and evaluation time. The numerical experiment that will be carried

out using the assumptions developed above will test the prediction accuracy and

evaluation time metrics. The data availability criterion will be assessed qualitatively.

A discussion of this criterion is given in the results section for Experiment 4.

For the first criterion, prediction accuracy, the results from each option will be

analyzed for all 288 vehicles simultaneously. The lumping of all vehicles will allow

for easy identification of the general trends shown by each incrementing option. As

discussed previously, the prediction accuracy criterion relates to the capture of the

reliability growth of the system across the whole life-cycle. Therefore the results

will be examined for trends that illustrate the expected initial reliability, mature

reliability, and number of flights to reach maturity.

The expected result for this criterion is that option 1 will show a much more

pronounced reliability growth curve than options 2 and 3. Option 1 anchors all of

the subsystem reliability growth curves at equivalent flight 0, which should lead to a

relatively well behaved system level growth curve. This option essentially guarantees

that the output will provide all of the desired characteristics.

Option 2 anchors each of the subsystems at equivalent flight 0 but it uses an

alternative incrementing scheme. In this approach, the subsystems are incremented

based upon an assumed failure. For each step in time random draws are performed

based upon the current reliability of each subsystem. If the draw determines that

the subsystem “failed” the subsystem reliability growth curve will be incremented.
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This approach is expected to introduce extra variability into the system level output.

Ultimately this option is expected to produce a very wide range of expected system

reliabilities that will not produce all of the desired characteristics.

In terms of prediction accuracy option 3 is also expected to perform worse than

option 1. Option 3 anchors each of the subsystems at a non-zero equivalent flight,

which represents the varying test schedules of the subsystems. Although this more

closely mimics actual programs, option 3 does introduce extra requirements for input

data. It will also produce an initial reliability that pertains to the first operational

flight, which will be larger than the initial reliability value that is a desired output.

The third criterion, evaluation time, is expected to be very similar for all three

of the options. Since option 2 introduces additional random draws for each case, it

is expected that this option will have the longest total runtime. Option 3 introduces

alternative first flights for each of the subsystems, which may also increase the required

runtime. The first option is the simplest in this case and is therefore expected to

require the least amount of runtime.

As stated in hypothesis 6, option 1 is expected to perform the best in terms

of prediction accuracy, evaluation time, and data availability. In order to accept

this hypothesis the following criteria will be used. First, the discussion of the data

availability criterion must show that option 1 is the most desirable for Experiment

4. As discussed previously, it will be advantageous for the method to require as little

information as possible. Second, the numerical experiment must show that the first

option does indeed produce the desired characteristics in the reliability output. To

accept the hypothesis, option 1 must be deemed to capture these characteristics in a

more consistent manner than the other options. Finally, the first option must perform

at least second best in terms of required evaluation time. In the event that the option

finishes second or third best the relative differences in runtime will be evaluated. If

the differences are significant, meaning an order of magnitude, then the hypothesis
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may need to be rejected. However, if option 1 finishes last in terms of evaluation time

but the relative difference in time is small, the hypothesis can still be accepted.

3.11.2 Experiment 4 Results

After completing the assumptions for Experiment 4, the reliability growth models

were run for all 288 vehicle architectures. In order to observe the trends from each

option, the mean reliability values for each vehicle have been plotted below. The first

option output can be seen in Figure 28.

The output for option 1 shows a large reliability growth trend with a narrowing

range as the equivalent flight number increases. At the first flight the architectures

have a very large range of reliability values, between 0.65 and 0.98. An interesting

trend can be seen near the top most curves at the lower flight numbers.

In this portion of the output plot a few groups of reliability growth curves can be

seen, which can be traced back to the options from the matrix of alternatives. These

bands represent discrete jumps in reliability when selecting number of engines and

number of boosters. The individual growth curves within each band represent the

selections for engine out and subsystem redundancy.

The groupings seen in the option 1 output is a promising trend when considering

the prediction accuracy criterion for Experiment 4. In this example case, option

1 has produced very noticeable differences between the various vehicle architecture

options, which will allow the analyst to assess the effects of each option. Ultimately,

the proposed approach is aiming to support this sort of decision making during early

design.
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Figure 28: Reliability growth output for option 1

The output for option 2 can be seen in Figure 29 below, which plots the output

on the same scaled axes as option 1. In this case it is immediately clear that the

output is drastically different. The option 2 output shows a similar range in the

initial reliability of the vehicle, however it immediately jumps to a higher reliability

and remains within the same range for the rest of the flight history. In this case it is

much more difficult to differentiate between the various architecture options as they

all lie nearly on top of one another.

The very immediate reliability jump is also cause for concern as this trend is typ-

ically not seen in real systems. The large jump in reliability for option 2 may be

caused by the incrementing scheme that was introduced into the growth models. Due

to the fact that option 2 increments based upon assumed failure, a double counting

effect may exist within the model. For each of the individual components, reliability

growth projections are created at the beginning of the model run. Next, the random

draws are used to determine the rate at which each of these reliability growth projec-

tions are incremented in time. The growth projections themselves, however, already
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include these assumed failures. Therefore, it is suspected that at every increment

determined by the random draw a much larger increase in reliability will be observed.

The output of option 2 shows that the increment based upon assumed failure

approach is not appropriate for application in the CONTRAST method. The very

large jump in reliability along with the constant range in reliability across all flights

does not bode well for prediction accuracy. If this option was implemented it would be

very difficult for the analyst to find appreciable differences between the architecture

options.
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Figure 29: Reliability growth output for option 2

The final option for Experiment 4 is to anchor each of the components based upon

an assumed first flight. This assumed first flight was meant to represent the amount of

development time that the subsystem would go through prior to the first operational

launch of the vehicle. Note that this assumption essentially means that the first flight

shown in the overall system output is representative of the expected reliability at the

first operational flight. This is illustrated in Figure 30 below, which shows a much

more narrow range than options 1 and 2 for the reliability at equivalent flight 1.
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The results of option 3 show a pronounced reliability growth trend with a narrow-

ing range as the equivalent flight number increases. This is similar to the trend seen

in option 1 but with a smaller range in the reliability values. The smaller range is

most likely due to the anchoring assumptions, which effectively eliminate the earliest

sections of the individual subsystem reliability growth curves. The early sections of

these curves will have the largest range in reliability with a decreasing range as the

equivalent flights increase. The elimination of the widest ranges leads to a smaller

range at the system level.

In comparison to option 2, option 3 performs much better. This option shows a

noticeable reliability growth trend for the vehicle, which is much more realistic than

the immediate jump from option 2. However, option 3 does eliminate the section of

the reliability growth curve that relates to the developmental period leading up to

the first operational flight. As noted in the development of the research objective, the

reliability growth through this developmental period is of interest to the reliability

analyst. This section of the reliability growth projection is crucial to the estimation of

the number of required equivalent flights to reach a specific reliability target. Ideally,

the analyst can use such an estimate to determine at what point the first operational

flight will be appropriate. Since option 3 sets a specific point for the first operational

flight, this approach is not possible.

Another issue with option 3 is in regard to the data availability criterion for Ex-

periment 4. This criterion was included in order to account for the extra information

that is needed for each of the identified options. For option 1 and option 2, no ad-

ditional information is needed besides the reliability growth assumptions for each of

the subsystems. Option 3 however, requires a timeline for the development of each

of the subsystems. This timeline is used to determine the anchor point for the first

equivalent flight of each subsystem. Although the subsystems are typically developed

at different times and rates, this assumption requires more information regarding the
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development schedule. In order to produce the first flight assumptions for each sub-

system the vehicle development schedule must be assumed a priori. For most new

vehicles, especially novel concepts, there will not be previous vehicle programs on

which the assumptions can be based. This will ultimately lead to inaccuracies in the

reliability growth projection for the new vehicle. It will also commit the analyst to

one number for the first operational flight, which cannot be adjusted later on during

the analysis. This will reduce the flexibility and overall usefulness of the results.

Overall, option 3 performs better than option 2 in terms of the relative accuracy

criterion. It is not expected to perform better than option 1 for this criterion. In

terms of data availability, this option is the only one that requires additional data.

Therefore, option 3 is the only approach that will be negatively affected by the lack

of appropriate data.
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Figure 30: Reliability growth output for option 3

The output plots discussed above were used to evaluate the performance of each of

the options relative to the accuracy and data availability criteria. The final criterion

to be assessed is the required runtime of each option, which is an important criterion
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because of its implications when evaluation very large architecture spaces. A minimal

runtime is desired for the method to enable the evaluation of large trade spaces.

Table 19 gives the required runtime of each of the options. This table shows that

the second option performs best in terms of required runtime, with option 1 ending

up in second. The third option required about 5 minutes longer to evaluate the 288

architectures than the second option. The difference between option 2 and option 1 is

much smaller at 3 minutes. In terms of time required per architecture, this difference

is only about 0.5 additional seconds per case. Although option 2 performs better

than option 1 in terms of runtime, the discussion of the relative accuracy above can

be used to eliminate option 2 from realistic consideration.

Table 19: Required runtime of each option in Experiment 4

Option Runtime (s)

Anchor at flight 0 2531

Increment using assumed failure 2355

Anchor based on assumed schedule 2681

The reliability growth results for Experiment 4 evaluated three options against

three criteria. In looking at the output for each of the options, the first option can

be considered most desirable for the first two criteria, relative accuracy and data

availability. Option 1 does not perform best in terms of required runtime, but it does

come in close second to option 2. Option 2 cannot realistically be applied in the

method due to its shortcomings in terms of relative accuracy. Therefore, the results

of Experiment 4 can be used to accept hypothesis 6, which identified option 1 as the

most desired for application in the CONTRAST method.
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CHAPTER IV

CONTRAST METHOD

4.1 Method Description

Chapter 3 presented the development of the specific steps within the CONTRAST

method. Beginning with a generic process outline the method was constructed, re-

sulting in four primary blocks. First, the Problem Definition block represents the

identification of alternatives and metrics of interest. The next block, Subsystem

Growth Curves corresponds to the generation of growth projections for each of the

subsystems within the defined architecture space. After producing these projections

the third block, System Level Growth Projection, utilizes an automatically generated

fault tree for the vehicle being analyzed. Finally, the Architecture Comparison block

represents the evaluation of the method output, which ultimately leads to the selec-

tion of a baseline vehicle using reliability and safety as a figure of merit. Within the

four primary blocks, five specific steps for carrying out the CONTRAST method can

be identified. These steps will be discussed in more detail in the following sections.

4.1.1 Step 1: Vehicle Definition

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

The first step of the CONTRAST method is to identify the vehicle concepts to be

analyzed. This will be achieved via the use of a morphological matrix containing

all possible alternatives in the architecture space. The analyst must first break the

launch vehicle into specific physical attributes such as number of stages or number

of engines, and identify the potential options for each attribute. The list of physical
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attributes can typically be easily generated for a launch vehicle.

After determining the concepts to be evaluated, the metric of interest for the

analysis must be selected. The metric of interest, such as LOM, LOV, or LOC

will depend upon the types of vehicles within the defined architecture space. If

manned vehicles are being considered, a safety metric in the form of LOC may be

the most desirable. On the other hand, if un-manned vehicles are being considered,

a reliability metric such as LOM may be more appropriate. It is important to clarify

the metric of interest prior to setting the reliability growth assumptions in order to

ensure consistency between the subsystem models. Only failure modes that contribute

directly to the metric of interest should be included in the model assumptions.

Next, the analyst must prepare the metadata to be used in step 3 of the CON-

TRAST method. This data can be prepared in two different ways depending upon the

heritage of the subsystem under consideration. The first approach involves subsys-

tems that have extensive flight history or are derivatives of subsystems with extensive

history.

In this case it is very likely that design, test, and operational data will be avail-

able. Ideally, existing FMEAs can be used to estimate the number of failure modes

inherent to each subsystem. These FMEAs can also be used to generate the proba-

bility of occurrence assumptions for the growth models if criticality was included in

the analysis.

If FMEAs do not exist for the subsystem a simple PCM approach can be used

based upon any other design specifications or analysis. This parts count approach

will generate a generic list of failure modes inherent to the subsystem. In the absence

of FMEA data, the probability of occurrence assumptions can be generated based

upon previous test or operations data. If the subsystem benefits from extensive flight

history, it is likely that estimates for its overall reliability have been calculated. In

this case, it is suggested that the subsystem reliability be set to the value derived from
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the data. Then the probability of occurrence distribution can be derived by assuming

that the sum of the probabilities of occurrence of all the subsystem’s failure modes

must equal one minus the subsystem’s reliability. This approach was demonstrated

in the example problem and is outlined in Appendix C.

The second approach for generating the reliability growth assumptions comes into

play when dealing with subsystems that are new or novel concepts. In this case, there

are no similar subsystems to compare to and no historical data to utilize. For a new

subsystem, the PCM approach discussed above must be employed using a generic

description of the subsystem. This generic description simply requires a layout of the

subsystem that identifies the major components within the subsystem.

The probability of occurrence assumptions for the failure modes of a new system

must be developed based upon the literature. Ideally, a similar historical system could

be used. However, exotic concepts will not be able to rely upon such data. In this

case it is suggested that the generic reliability distributions discussed in Experiment

1 be used. These distributions can be used for the assumed probability of failure

of the subsystem as a whole, which allows for the derivation of the probabilities of

occurrence for the failure modes. The example problem presented in the following

section will illustrate the merit of this approach.

Once the metadata is populated the matrix of alternatives is complete. The vehicle

definition can now be carried out by selecting one option for each row of the MOA.

After a full vehicle concept has been identified, the metadata from each selected option

will be collected. From this the second step, fault tree generation, can be carried out.
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4.1.2 Step 2: Fault Tree Generation

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

Based upon the selected options in the MOA, the fault trees will be automatically

generated using a basic set of rules. The fault trees will be set up in a relatively simple

manner, making automatic generation fairly straight forward. Basic events will be

defined for each option that is selected from the MOA. These basic events represent

the failure of the specific subsystem. For example, if the analyst selected engine

option 1 the fault tree would include a basic event representing the failure of that

engine. Additional parameters will determine the number of basic events produced

for each option. For example, if four engines were selected along with engine option

1, four basic events for engine failure will be produced. Another example is the use

of redundancy. If a fully redundant power subsystem is included, the fault tree will

include two basic events for power subsystem failure connected to an AND gate. In

the case of redundancy, a common cause failure event is also included in the FTA

setup. If common cause failures are not being considered, the CCF fraction for each

component can be set to zero.

In addition to creation of basic events, AND gates, OR gates, and k-out-of-n

voting gates will be included in the tree to link the top level event to the basic events.

The top level event of interest for launch vehicles will be the probability of loss of

mission (LOM), loss of vehicle (LOV), or loss of crew (LOC). With the creation of

each basic event, the metadata from the corresponding option in the MOA will be

saved. This will facilitate the creation of subsystem level reliability growth curves in

the next step.
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4.1.3 Step 3: Reliability Growth Curve Generation

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

After the fault tree has been generated, the reliability growth curves are needed at the

subsystem level. These curves will be generated for each subsystem and applied to

the corresponding basic event included in the fault tree. In order to create the curves,

the metadata must first be accessed. This data will set up the basic assumptions for

the reliability growth model. The Python objects shown in Appendix A represent the

matrix row and component objects that store the reliability growth assumptions.

For each component object the “HallReliabilityGrowth” method is called. The

method requires three primary inputs, which represent the number of steps in time

to evaluate the model, the number of repetitions at each step, and the total length

of the flight history. This method then runs a Monte Carlo simulation using the Hall

model, which produces the reliability growth curve along with its confidence bounds.

At the conclusion of the run of the “HallReliabilityGrowth” method, the reliability

growth data is stored within the “relArray” attribute for the given component object.

The implementation of the Hall growth model in Python is given in Appendix B.

4.1.4 Step 4: Monte Carlo Simulation

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

The next step in the CONTRAST method is to utilize Monte Carlo simulation to

combine the lower level reliability growth curves into a system level estimate. Due

to the fact that the automatically generated fault tree will be relatively simple, the

exact expression for evaluation of the fault tree will be derived. This expression will

include the probabilities of failure for each of the subsystems (basic events) in the
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tree. As was discussed in Section 3.11 a single strategy for anchoring the subsystem

growth curves has been identified. This approach anchors all of the subsystem growth

curves at equivalent flight 0 and increments them all at the same rate.

At every step in time the probability distributions for each subsystem are queried

using the “RelUpdate” method. This method is passed the repetition number along

with the step number and returns a reliability value for the subsystem at the given

step in time from the “relArray” attribute. After the “RelUpdate” method is run

for each subsystem within the fault tree expression, the equation can be evaluated to

give the system level reliability estimate. Running a MC at one point in time will

thus generate a probability of failure distribution for the system as a whole. The

MC process is repeated at specific increments through time, ultimately producing a

reliability growth curve with confidence bounds for the entire system.

It is important to note that the number of repetitions performed at each step

in time is an important setting to be determined by the analyst. The number of

repetitions is the number of random draws to be taken from the subsystem reliability

distributions in order to produce the system level distribution at the given step in

time. Therefore, this parameter will have a large effect on the overall runtime of the

method. It will also affect the granularity of the resulting system level output. Using

a very small number of repetitions will not accurately resolve the resulting system

distribution, while too many repetitions will require a very long runtime for each

vehicle. Appendix D presents a short study, which gives recommendations as to the

number of repetitions that should be used to balance these two effects. The results of

this study suggest that the number of repetitions should be limited to less than 2000

to keep the runtime at a reasonable level.

With the conclusion of the MC runs the reliability growth projections for all of

the vehicles in the matrix of alternatives will be available to the analyst. The final

step in the CONTRAST approach is then to evaluate the vehicle concepts.
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4.1.5 Step 5: Concept Evaluation and Selection

Problem 
Definition

Subsystem 
Growth Curves

Architecture 
Comparison

System Level 
Growth Projection

Finally, after the system level reliability growth curve has been generated it can

be stored for comparison to other vehicle architecture concepts. This step involves

the comparison of the various attributes of each growth curve to one another in

order to identify a desired concept. As was discussed in Section 3.1, attributes for

comparison include initial reliability, expected reliability at first operational flight,

mature reliability, number of flights to minimum required reliability, and number of

flights to maturity.

Although concept evaluation and selection is a major step in the CONTRAST

method, a specific method for carrying out concept selection is beyond the scope of

this research. The primary research objective is to produce reliability estimates that

will aid the decision maker regardless of the specific decision making technique being

employed. Therefore, this research will only suggest trends and various attributes

that the decision maker can expect to see and exploit from the CONTRAST method.

Chapter 5 will present a full application of the CONTRAST method to an example

launch vehicle problem. In this chapter the comparison of different concepts will be

illustrated and the key advantages of using the CONTRAST method will be explained.

4.2 Example Problem

After developing the CONTRAST method, an example problem was selected in order

to demonstrate the reliability growth approach on an actual vehicle. This example

problem will serve as a final validation effort to show that the CONTRAST method

can accurately predict the reliability of a previous launch vehicle. The Space Trans-

portation System, otherwise known as the Space Shuttle, was chosen for the example
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problem. The shuttle was chosen due to its extensive flight history, as well as avail-

ability of vast amounts of documentation in regards to design, testing, and operations.

The Space Transportation System (STS) is made up of four primary elements

including the orbiter, external tank, and two re-usable solid rocket boosters. The

orbiter is the element used to carry astronauts as well as any payload to and from

orbit. Each orbiter was designed to be fully reusable for up to 100 missions [115].

Over the course of the Space Shuttle program, five orbiters were flown; Columbia,

Challenger, Discovery, Atlantis, and Endeavor [27]. Although the orbiter supported

all in-space and re-entry activities, it also served an important purpose at launch,

housing three Space Shuttle Main Engines (SSMEs).

The SSME is a re-usable staged-combustion cycle liquid rocket engine that utilizes

liquid hydrogen and liquid oxygen as fuel and oxidizer, respectively [133]. On launch

the three SSMEs on the orbiter were burned for approximately 520 seconds and were

the sole source of thrust after solid rocket booster (SRB) jettison [115]. The fuel and

oxidizer for the SSMEs was stored in the external tank element of the STS.

The external tank was the only non-reusable primary element of STS. During

each launch the tank was jettisoned and burned up upon re-entering the earth’s

atmosphere. The external tank was used to store liquid hydrogen and oxygen, which

was cross-fed into the orbiter to be used by the SSMEs.

A pair of re-usable solid rocket boosters attach to the external tank, which were

the primary source of thrust for the first segment of the launch trajectory [115].

During launch the SRBs are jettisoned after approximately two minutes of flight,

ultimately making parachute assisted ocean landings. After the SRBs made water

landings they were recovered and refurbished for future launches. Each SRB was

considered reusable for up to 20 launches [115].

Since the example problem will only utilize a single vehicle architecture the fault

tree for the STS can be generated prior to the execution of the growth models. This
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fault tree will include basic events for each of the identified subsystems within the

vehicle architecture. The development of the fault tree and its equations is presented

in the following section.

4.2.1 STS Fault Tree

To carry out the example problem, the STS was first broken into its four primary

elements. These elements will serve as the primary “subsystems” that make up the

STS launch system. The SRBs and external tank will not be broken into further

subsystems for the example problem. However, the fourth STS element, the orbiter,

will be further decomposed into vehicle subsystems. The reason for this decomposition

is the inclusion of multiple mission critical subsystems into the orbiter element. These

subsystems include the SSMEs as well as the Shuttle avionics, for which reliability

growth curves will be generated. After identifying these elements the fault tree for

the STS can be manually produced.

The STS fault tree used for this example problem can be seen in Figure 31 below.

The fault tree begins with the top level LOC event. Loss of crew was chosen over

loss of vehicle due to the availability of STS data. In reference [78], Hamlin presents

the reliability growth of the shuttle in terms of probability of LOC at each mission.

This data was generated using the full STS probabilistic risk assessment, which is

accepted as the state-of-the-art for estimating mission risk [121, 129].

From the top level event, four failures representing the four primary elements of

STS are connected via an OR gate. Each SRB and the external tank are represented

using circles, which are basic events. This indicates that the three elements will not

be decomposed any further.

The fourth event in the second level of the tree refers to an orbiter failure that

will cause an LOC event. In this case the orbiter is decomposed into three sub events,

avionics failure, structural failure, and SSME failure. These events are connected via
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an OR gate. The avionics failure is a basic event and will be represented using a

reliability growth curve. The structural failure event is also a basic event, but will be

represented using a simple probability based upon the literature. The vehicle struc-

tures are expected to mature at a very rapid rate compared to the other subsystems.

Therefore, the structures will be assumed to be at a “mature” reliability point prior

to the first test launch of the vehicle.

LOC

Orbiter

Avionics 

Failure

SSME 1 SSME 2 SSME 3

SSME 

Failure

External 

Tank
SRB 2SRB 1

Structural 

Failure

Figure 31: High Level STS fault tree

Due to the fact that the orbiter houses three SSMEs, the third orbiter failure event

is decomposed into three individual SSME failure events. It is important to note at

this point that the individual SSME failure events are linked via an OR gate and not

a k-out-of-n voting gate. A k-out-of-n voting gate would represent the case where two

out of the three SSMEs would have to fail in order to cause an orbiter failure. This

translates to the existence of an engine out capability, which the STS did have [74].
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However, this engine out capability is only applicable to benign engine failures. Due

to the LOC top level event, the SSME failures being considered are of the non-benign

type, which can cause damage or destruction of the other SSMEs, elements, or the

entire vehicle. For this reason a standard OR gate is used and the reliability growth

curves for the SSMEs are generated under the assumption that all failure modes are

catastrophic in nature.

After generating the STS fault tree, a mathematical expression for the probability

of LOC can be derived. This expression will be used in addition to the subsystem

level reliability growth curves to generate the expected growth curve for the full STS

vehicle. From the top level event, the probability of LOC can be written:

PLOC = 1− (1− PSRB1) ∗ (1− PSRB2) ∗ (1− PExternalTank) ∗ (1− POrbiter) (27)

where POrbiter, and PSSMEs can be written:

POrbiter = 1− (1− PAvionics) ∗ (1− PStructures) ∗ (1− PSSMEs) (28)

PSSMEs = 1− (1− PSSME1) ∗ (1− PSSME2) ∗ (1− PSSME3) (29)

In Equation 28, the value for PStructures will be defaulted. This parameter repre-

sents the probability of failure of the orbiter structures. As was discussed previously,

this probability was estimated based upon data published by Hamlin [78]. The value

used for the probability of orbiter structural failure for the example problem is 1 in

340 flights.

The remaining probabilities in Equations 27, 28, and 29 will be generated based

upon projected reliability growth curves. These probabilities include PSRB1, PSRB2,

PAvionics, and PSSMEs. The following section will discuss the generation of the relia-

bility growth curves and enumerate their underlying assumptions.
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4.2.2 STS Reliability Growth Assumptions

In Section 3.4 of Experiment 1 the Hall growth method was identified as the most

suitable for application in the CONTRAST method. Therefore, the Hall method was

used to generate the necessary reliability growth curves for the example problem. As

discussed in Section 3.3.1, the Hall model contains three primary assumptions: num-

ber of failure modes, probabilities of occurrence for each mode, and a fix effectiveness

factor for each mode. In Section 3.5 the level of application of the Hall model was dis-

cussed, resulting in the identification of the subsystem level as the most appropriate.

Although the assertion to research question 3 identified this level as best, both the

system and subsystem level approaches will be included in the example problem. The

use of the system and subsystem level approaches in the example problem will further

illustrate the difference between the two. The subsequent sections will develop the

reliability growth assumptions at the system and subsystem levels for the STS.

4.2.2.1 System Level Assumptions

The system level assumptions for the STS are very simple to produce for the example

problem because they have already been addressed by Experiment 1 in Section 3.4.1.

Within Section 3.4.1 the number of failure modes for the system level approach was

defined as a range between 6 and 12 modes. This range was determined based upon

the number of basic events that show up in the STS fault tree that contribute directly

to an LOC. In Figure 31 there are eight such basic events, which lies within the defined

range for number of failure modes.

The system level probability of occurrence distribution was also defined in Section

3.4.1 for the STS vehicle. In this section the probability of occurrence distributions

given in the literature were compared. Ultimately, it was shown that multiple authors

presented similar probability of occurrence distributions. One of these distributions

was chosen from the literature to represent the probability of occurrence values for
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the STS system. This distribution is Beta(0.25,8.75), which has a mean of 0.025 and

a standard deviation of 0.05.

The final assumption for the system level approach is the fix effectiveness factor.

These factors were discussed in more detail in Section 3.4.1 for the system level

approach. In this section it was concluded that a relatively high fix effectiveness

factor was appropriate for the STS. This is primarily due to the fact that the STS is

a manned vehicle, which requires very extensive post flight data analysis and anomaly

investigation. The fix effectiveness factors for the system level were therefore modeled

using a uniform distribution between 90% and 99%.

4.2.2.2 Subsystem Level Assumptions

After generating the assumptions for the system level approach, the subsystem level

assumptions must be addressed. First, the individual subsystems of the STS must

be defined. Then the number of failure modes, probability of occurrence, and fix

effectiveness factors must be set for each of the subsystems.

The STS consists of four primary elements, the orbiter, solid rocket boosters, and

external tank. The orbiter houses three primary subsystems that are essential to

the success of an STS launch, the primary avionics, power, and Space Shuttle Main

Engines. Figure 31 illustrates the breakdown of the STS subsystems. From this

figure four individual subsystems can be identified for the example problem. These

subsystems include the orbiter avionics and power, SSME, solid rocket booster, and

external tank.

The first subsystem that will be considered is the Space Shuttle Main Engine. The

SSMEs are staged combustion engines that burn liquid oxygen and liquid hydrogen.

In order to produce an estimate for the number of failure modes of the SSME a

simple parts count approach can be utilized. This PCM approach is based off of the

notional diagram of a staged combustion engine given in Figure 32. Figure 32 shows

176



www.manaraa.com

a notional diagram of a staged combustion engine, which includes turbopumps for the

fuel and oxidizer, a pre-burner, flow control valves, a combustion chamber, nozzle, and

heat exchanger. In addition, the engine may include a hydraulic system for thrust

vector control. Although the notional engine shows only a single pre-burner and

one turbopump each for the fuel and oxidizer, multiple pre-burners and turbopumps

may be used. In fact, the SSME utilizes two turbopumps for each propellant along

with two pre-burners [155]. From the notional diagram an estimate was generated of

between 8 and 15 failure modes for the SSME.

In order to support the above approach for generating the number of failure modes

assumptions, actual data for the SSME was gathered. Due to the extensive testing

of the SSME throughout the STS program, a wide variety of failure analyses, failure

reports, and FMEAs are available. One source in particular was used to evaluate the

number of failure modes assumption from above.

Figure 32: Notional diagram of a staged combustion liquid rocket engine
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This source is a comprehensive FMEA that was developed for the SSME in the

mid-1980s [70]. Within this FMEA around 190 total failure modes were identified and

evaluated for the SSME. Each of the modes were categorized based upon criticality

and the estimated end effect. Although 190 is a large number of modes, only 3 of

these modes were determined to cause an immediate loss of the vehicle and crew [70].

An additional 7 failure modes were labeled as probable loss of vehicle. The next

lower criticality level, loss of engine, includes 3 more failure modes. Conservatively

speaking, the total number of modes from the detailed FMEA that could lead directly

to an LOC is 10 or 13 depending upon the inclusion of the loss of engine criticality

level. In comparison to the PCM approach, this number lies directly within the

defined range for number of failure modes for the SSME.

The next element of the STS to consider is the external tank (ET). The ET houses

the liquid oxygen and liquid hydrogen used by the SSMEs during ascent. The tank

also supports the entire system during ascent, serving as the primary attach point for

both boosters and the orbiter. A list of primary components of the external tank is

given below. From this list a range of 7 to 15 failure modes for the external tank was

derived.

• Liquid hydrogen tank: 2 domes, one cylinder

• Liquid oxygen tank: 2 domes, multiple cylinders

• Intertank SRB attach points

• Orbiter attach points

• Orbiter cross-feed lines

• Internal anti-slosh baffles

• External foam insulation
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The next element to be considered for the STS is the solid rocket booster. As

shown in Figure 20 the STS system utilizes two SRBs. The SRBs are four segment

boosters using a mixture of primarily powdered aluminum and ammonium perchlorate

as propellant and oxidizer [115]. The boosters also house instrumentation for thrust

vector control, separation, and recovery. For the ascent phase of the STS mission a

list of key booster components is given below. From this list a range of 7 to 15 failure

modes per booster was derived for use in the example problem.

• Four propellant segments including casing

• Joints at each segment connection

• Nozzle and vector control

• Igniter

• Pad tie-down and vehicle supports

• Connector struts to ET

The final subsystem to consider for the STS example problem is the orbiter avion-

ics. This subsystem is assumed to include the power subsystem of the orbiter as well.

The orbiter avionics subsystem controls all tasks regarding guidance, navigation, and

control during vehicle assent. It also includes communications between the vehicle

and ground control and the timing of staging events such as SRB separation. Similar

to the previous subsystems a list of key components and functions was put together

for the avionics subsystem. This list can be seen below and was used to develop the

range of failure modes for the avionics subsystem. The range of number of failure

modes for the avionics subsystem was set between 10 and 20.

• Flight computers (hardware and software)

• Data handling/processing
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• Instrumentation (flight controls, sensors, etc.)

• Power systems: Fuel cells, auxiliary power units

• Power distribution

• Cabling and wiring for flight controls, sensors, etc.

After identifying the number of failure modes assumptions for each of the STS

subsystems, the probability of occurrence values for the modes must be defined. Since

the system and subsystem level approaches will be compared in the example problem

it is important to setup the probabilities of occurrence to be consistent between both

levels. In order to ensure consistency, the probability of occurrence distributions for

the subsystems were derived based upon the system level distributions. The same

approach was taken in Section 3.11.1 of Experiment 4 resulting in the Beta param-

eters given in Table 17. In this approach, the number of modes for each subsystem

determined the number of random draws from the subsystem Beta distribution. The

summation of these draws was then required to approach the Beta distribution de-

fined for the system level. This process was carried out numerically using Equation

26 until the subsystem Beta parameters were converged upon.

Based upon the maximum defined number of failure modes for each STS subsys-

tem, this approach was used to determine the Beta parameters for the probability

of occurrence distributions. Table 20 below gives the maximum number of failure

modes and the resulting Beta parameters for each of the STS subsystems. Since

the maximum number of modes is the same for three of the four subsystems, only

two unique Beta distributions were used for the probabilities of occurrence at the

subsystem level.
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Table 20: Parameters for STS subsystem failure mode probabilities of occurrence

Subsystem Max # of Modes Beta parameters (a,b)

SSME 15 0.02, 10

External Tank 15 0.02, 10

SRB 15 0.02, 10

Avionics 20 0.015, 11

The final assumption that must be derived for the subsystem level growth models

is the fix effectiveness factor. As with the probability of occurrence assumptions, the

fix effectiveness factor assumptions must be set in order to ensure consistency between

the system and subsystem approaches. Therefore, the same range for fix effectiveness

will be used for all of the subsystems. The fix effectiveness factors for the subsystems

will thus be uniformly distributed between 90% and 99%, which is the same as the

system level approach.

4.2.3 STS Example Problem Results

After completion of the reliability growth model assumptions the models were setup

for the STS system and underlying subsystems. For every application of the growth

model 135 flights were assumed and the model was evaluated at every flight. Note

that for the subsystem level approach, the reliability growth models were applied to

the system level fault tree according to the results of Experiment 4. This means that

all subsystem growth curves were assumed to be anchored at equivalent flight 0. The

results from both the system and subsystem levels can now be compared against the

PRA data. The PRA data for the STS was discussed in more detail in Experiment 1

and can be seen in Figure 21.

Figure 33 below shows the system level reliability growth results plotted against

the PRA data. As can be seen in the plot, the system level approach is very close
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to the actual STS data. The mean predicted value tends to be greater than the

mean value given by the PRA. However, the mean prediction still lies within the

95th percentile of the PRA data. The 5th and 95th percentiles of the prediction fully

encompass nearly all of the mean values of the PRA data except for one point around

flight 90.

At this point in the flight history, the actual data takes a slight dip in reliability.

This reduction in reliability is due to a block upgrade that was performed during

the shuttle program. In the development of the PRA reliability growth data for the

STS, Hamlin notes that this specific reduction in reliability was due to a change in

the process for applying foam insulation on the external tank [78]. A similar effect

is seen during the early flights between 10 and 20, which was due to the disabling of

the ejection seats in the orbiter [78].

Overall the system level results perform well in comparison to the PRA data.

The range between the 5th and 95th percentiles is fairly narrow for the system level

approach, but it still captures a majority of the range shown by the actual data. The

only possible issue to note is that the results tend to over predict the reliability of

the vehicle.
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Figure 33: System level reliability projection versus STS PRA data
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The subsystem reliability results can be seen in Figure 34 along with the PRA

data. What can be seen almost immediately is that the subsystem level results display

a much wider range between the 5th and 95th percentiles. Although this is generally

undesirable, it does allow the subsystem results to almost fully capture the entire

range of the PRA data. Only two points fall outside of the subsystem results range,

both are on the 5th percentile line of the PRA output. From this figure it is also

apparent that the growth prediction is no longer over predicting the STS reliability.

The mean value of the subsystem results follows the mean value of the PRA data

fairly well but tends to be on the low side of this data.

Figure 34 shows the validity of the CONTRAST method for projecting launch

vehicle reliability growth. Using a fairly simple set of assumptions stemming from

the literature and parts count, the reliability growth behavior of the STS vehicle

has been fully captured by the CONTRAST method. The wide bounds shown by

the results are not necessarily a detriment to the prediction accuracy either. The

bounds ensure that any behavior that the vehicle may encounter will be encompassed

within the prediction. This behavior may include discrete positive or negative jumps

in reliability due to upgrades or plateaus in reliability at any point during the flight

history.
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Figure 34: Subsystem level reliability projection versus STS PRA data
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After comparing the system and subsystem results to the PRA data a few key

observations can be made. First, the ranges produced by each of the approaches are

very different, with the subsystem results showing a much larger range. The narrow

range displayed by the system level results seems to be more desirable. However, this

narrow range does not allow it to fully capture the behavior of the actual vehicle.

As noted above there are multiple points that fall outside of the lower bound of the

system level prediction, which is undesirable. Although the subsystem level results

show a much wider range in the reliability predictions, this range allows for the full

capture of the PRA data.

The second observation is in regard to the accuracy of the system level output.

The mean value of the system level prediction falls very close to the mean value of

the PRA data. This result is especially important when considering the probabil-

ity of occurrence assumptions for the growth model. As discussed previously, the

probability of occurrence values can be difficult to estimate when no historical data

is available. For the example problem it was assumed that no data was available,

thus the probability of occurrence values were derived from literature. A very simple

distribution was setup using the reliability growth literature, which seems to have

represented the actual system very well. This is a very promising result because it

shows the validity of these assumptions.

Although the system level results are very promising, the discussion of research

question 3 shows the need for the subsystem level approach. Recalling this discussion,

the system level approach is unable to capture changes in reliability due to architec-

ture options such as redundancy or engine-out capability. Since the example problem

was looking at catastrophic failures only, inaccuracies due to redundancy or engine-

out were not seen. Therefore, the results of the example problem do not change the

conclusion that the subsystem level approach is more appropriate.
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In addition to testing the system level approach again during the example prob-

lem, the various approaches for incrementing the subsystem level growth curves were

implemented. The results of this additional test can be used to further support the

conclusions drawn by Experiment 4. Figure 35 below gives the results for option 2

of Experiment 4, while Figure 36 shows the results from option 3. Recall that op-

tion 2 refers to the incrementing based upon assumed failure, while option 3 refers

to anchoring of the subsystem growth curves based upon assumed schedule. For the

STS example problem option 3 utilized the timeline discussed in Section 3.11.1 for

the assumed schedule.
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Figure 35: Subsystem level reliability projection using incrementing option 2

The reliability growth results for the example problem using option 2 can be seen

in Figure 35 above. In the figure the growth projection is plotted against the STS

PRA data. This figure very quickly illustrates the issues with using the alternative

incrementing scheme. The range between the 5th and 95th percentiles of the predicted

data is very large for the entire length of the flight history. Although the predicted

data fully encompasses the actual PRA data, the prediction shows that the vehicle
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will lie somewhere between 0.6 and 0.99 for the entire flight history. The mean

predicted value also lies well below the actual data and does not capture much of the

reliability growth trend. This result is similar to what was illustrated in Experiment

4, where the resulting range of the predictions was very large. As discussed during

that experiment, the increase in range is most likely due to a double counting effect.

Figure 35 ultimately shows that the first option from Experiment 4 will perform much

better in terms of prediction accuracy than option 2.

The example problem results using option 3 from Experiment 4 can be seen in

Figure 36. In this figure the reliability growth projection is plotted against the actual

PRA data for the STS. As can be seen in the figure, option 3 performs better than

option 2 from above. The reliability prediction has a much more narrow range in this

case. However, option 3 tends to over-predict the vehicle reliability. The mean value

of the prediction lies along the 95th percentile line of the PRA data for the entire

flight history. This result would suggest that the assumed first flight approach gives

an overly optimistic estimate of reliability.

The increase in reliability seen from this option is due to the fact that the subsys-

tem growth curves are anchored at non-zero equivalent flights. What this means is

that the initial reliability of each of the subsystems is higher in comparison to option

1. Since the subsystem reliabilities start at a higher value, it is no surprise to see that

the entire flight history shows a higher reliability. Similar to the results from option

2, the option 3 results in Figure 36 further supports the conclusions from Experiment

4. This figure shows that option 3 does not perform as well as option 1 in terms of

prediction accuracy.
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Figure 36: Subsystem level reliability projection using assumed first flight

As illustrated by Figure 34, the output from the first incrementing option fully

encompasses the given PRA data. This shows that the output of the CONTRAST

method is able to capture any architecture effects on reliability throughout the flight

history using the specified incrementing option. However, it is interesting to note the

difference between the given data and the projection from the CONTRAST method.

The difference between the given data and the reliability projection is very clear; the

PRA data includes discrete jumps in reliability, while the projection is continuous.

Although the CONTRAST output in Figure 34 is continuous, the data still captures

the discrete nature of the given data.

First, consider the given PRA data in more detail. Along with the data in reference

[78], Hamlin gives a description of the primary changes that were made to the STS

vehicle throughout its operational life. Each of the discrete jumps seen in the given

PRA data can therefore be traced to an incremental improvement or block upgrade

of one of the subsystems or components within the STS system. For example, at the

beginning of the timeline a negative effect is seen in the growth history. This change
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represents an increase in the probability of loss of crew, which can be traced to the

de-activation of the ejection seats in the orbiter [78]. Another example occurs later in

the flight history around flight 90, which represents the point at which an upgraded

high pressure oxidizer pump was introduced into the SSME [78].

Although these changes are very detailed and cannot be predicted during concep-

tual design, the CONTRAST method can still capture such results. The projection

shown in Figure 34 is only continuous because it is an aggregate of 1000 total runs of

the growth model. The Hall model itself is discrete, which means that each individual

run of the model will show discrete jumps and plateaus in reliability.

The effects of incremental improvements or component block upgrades can there-

fore be traced to the discrete jumps seen in the individual growth model results.

Within the results of the model the probability of mode occurrence will determine

how often a discrete jump occurs and the fix effectiveness factor will define the mag-

nitude of the change in reliability. Figure 37 shows three individual growth model

runs plotted against the mean and percentile data from the STS PRA.

These cases were selected to illustrate some similarities between the PRA data

and the growth model output. They also show discrete improvements that happened

randomly during the model run, which line up with different discrete jumps in the

PRA data. Note that each case represents a potential reliability growth track that

could be taken by the vehicle throughout its flight history.

The first case, colored in red, shows a discrete improvement that aligns with the

PRA data early on in the flight history. This trend, labeled A, was caused primarily

due to adjustments made to the SRB in the return to flight after the loss of Challenger

[78]. In this case during the growth model run, a failure mode occurred around flight

20 and due to a relatively high fix effectiveness factor the probability of loss of crew was

improved from 0.90 to around 0.96. After this improvement the PRA data plateaus

between flight 40 and 75.
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This plateau was captured by the second case from the growth model, which is

colored yellow. In the second case multiple failure modes occurred early in the flight

history, causing a rapid improvement in the probability of loss of crew. After reaching

flight 20 however, the probability of loss of crew plateaued at nearly the same level

as the PRA data labeled B. This plateau ultimately captures a period of time where

no major improvements or design changes were made to the vehicle.

The final case from the growth model, shown in green, captures the other major

discrete change in the PRA data. The original downward trend at this point in

the flight history was caused by the introduction of upgraded oxidizer pumps in the

SSMEs [78]. The upward trend labeled C was caused by the introduction of a new

foam application process for the external tank, which was supposed to reduce the risk

of debris strikes to the orbiter [78]. As seen in the figure a failure mode occurred in

the growth model at the same point in time as the upgrade in the PRA data. In this

case, the magnitude of the upgrade is closely matched as the growth curve plateaus

around 0.98.

Although the three cases shown in Figure 37 were specifically selected because

their random discrete trends matched the PRA data, their output helps illustrate

how the CONTRAST method can capture architecture effects on reliability. During

conceptual design it is nearly impossible to anticipate that a turbopump upgrade

for the liquid engines will be performed at equivalent flight 90. However, the effects

of said incremental upgrade can be taken into account in the CONTRAST method.

For example, an upgrade could be forced to occur at a specified point in the flight

history, which would produce a discrete change in the results. The magnitude of such

changes could be used to help choose between potential upgrade options. It could also

be used to identify the order in which the upgrades should occur in order to maintain

the highest reliability throughout the flight history. These two approaches will be

demonstrated in Chapter 5, which includes analysis of potential block upgrades for
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the SLS vehicle.

The comparison of the individual growth model cases to the PRA data also sup-

ports the use of a simple parts count approach for developing the number of failure

modes assumption. The parts count approach identifies key components within each

subsystem and assigns them as “failure modes” within the growth model. Therefore,

the modes within the growth model represent components that may be upgraded

later on. Thus any discrete changes due to the modes in the model will capture many

of the potential upgrades that will be encountered during the actual program. The

probability of occurrence therefore represents the probability that an incremental up-

grade or design change will be made to that specific part. The fix effectiveness factor

then represents the magnitude of the improvement, or detriment of the upgrade or

design change.
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Figure 37: Subsystem level reliability projection using assumed first flight
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4.2.4 Example Problem Conclusions

The STS example problem was setup as a validation exercise for the CONTRAST

method. The primary goal of this example was to demonstrate the ability of the

method to accurately predict the reliability of an actual launch vehicle. The exam-

ple problem was also used to further support the conclusions drawn from research

question 3 and Experiment 4. To conclude the example problem, a summary of the

findings is necessary.

First, the example problem results illustrated the accuracy of the CONTRAST

method. Figure 34 above shows the reliability growth prediction of the method plot-

ted against the PRA data for the STS. This figure illustrates the ability of the CON-

TRAST method to predict vehicle reliability growth. The prediction in this figure

fits the PRA data very well.

The fit of the prediction data also validates the reliability growth assumption

approach used in the CONTRAST method. To setup each of the subsystem relia-

bility growth models a parts count type approach was utilized, which simulates the

complete lack of available historical data. The accuracy of the resulting reliability

growth projections shows promise for the parts count approach. In addition, Fig-

ure 37 illustrates the connection between the parts count approach and the actual

data. Using PCM to define the modes within the growth model enables the model to

capture potential incremental changes or block upgrades that may occur throughout

the vehicle’s life-cycle. These results ultimately increase confidence in utilizing the

parts count approach when no historical data is available for a subsystem within the

identified vehicle architecture space.

Additional results for the example problem were produced in order to support the

assertion to research question 3 and the conclusions of Experiment 4. For assertion

3, a system level approach was included in the example problem, which generated a

growth projection for the STS at the system level. Although the results show a fairly
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promising fit to the PRA data, a slight over-prediction in reliability does exist. This

observation, in addition to the inability of the system level approach to predict trends

due to redundancy and engine out, leads to the identification of the subsystem level

approach as more desirable.

The final conclusions from the example problem support the findings of Experi-

ment 4. In Experiment 4 three options for applying the subsystem level reliability

growth curves to the system fault tree were tested. From these tests it was concluded

that option 1, anchor all subsystem curves at equivalent flight 0, is the most desirable

due to its prediction accuracy. Since the example problem used actual PRA data

from the STS vehicle, these three options were implemented in order to test their

prediction accuracy. The results from each of the options were plotted above, which

illustrated the shortcomings of options 2 and 3. These figures further support the

conclusion that option 1 will achieve the highest prediction accuracy.

The STS example problem illustrated the utility of the CONTRAST method and

verified its ability to accurately project launch vehicle reliability. A large scale test of

the method is now required in order to confirm that the research objective has been

successfully completed. This test problem will need to demonstrate the method on

a relevant launch vehicle design problem, which will ultimately verify that the three

requirements derived in Section 2.4 have been met.

192



www.manaraa.com

CHAPTER V

APPLICATION & RESULTS

In Chapter 3 the CONTRAST method was developed starting from the observations

from the literature review presented in Chapter 2. During the development of the

method several research questions and hypotheses were developed, which required

experimentation to accept or reject. These experiments have addressed all of the

hypotheses; however, an additional experiment is required to test the CONTRAST

method as a whole. Therefore, the purpose of this chapter will be to present a

test problem that will demonstrate the method and verify that the original research

objective has been met. This will be accomplished by applying the method to a real

world example problem. The research objective and the derived requirements from

Section 2.4 are restated below.

Research Objective: To formulate and implement a method that will quanti-

tatively capture launch vehicle architecture effects on reliability and safety, in order

to facilitate more informed decision making during early conceptual design.

Derived Requirements for Objective Completion:

1. The method shall produce quantitative estimates for reliability and/or safety of

the given launch vehicle concepts

2. The method shall have sufficient accuracy to enable comparison between unique

but similar concepts

3. The method shall be flexible enough to evaluate any potential launch vehicle

concept within the defined architecture space
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In order to test the completion of the research objective the CONTRAST method

must be applied to a real world example launch vehicle problem. Therefore, the

test problem will be set up based upon an actual launch vehicle, the Space Launch

System (SLS). The SLS is currently being developed by NASA as the next generation

heavy lift launch vehicle, which will enable manned exploration missions to the moon

and beyond [124]. The SLS was chosen as a relevant example because design trade

studies are currently being performed for future block upgrades of the vehicle. These

upgrades will ultimately affect the vehicle’s boosters and upper stage. Changes to

these elements represent architecture options that will have an effect on the vehicle’s

reliability and safety. Thus, the SLS was deemed to be a perfect example vehicle for

the application of the method.

To begin the test problem, a matrix of alternatives will be set up, which will

represent the various architecture options that are available for an SLS-like vehicle.

Additional options will be included in the matrix in order to capture more exotic

design configurations. After generating the MOA the underlying reliability growth

assumptions for each subsystem will be generated based upon literature or a parts

count approach, which was discussed in Experiment 1.

Next, the automatic generation code must be set up for the example problem.

During Experiment 4, automatic generation code was developed to produce both

RBD and FTA equations from a matrix of alternatives. Based upon the results of

that experiment a system level FTA will be used for the example problem. The code

from Experiment 4 will therefore be used to setup an FTA for any combination of

subsystems from the test problem matrix of alternatives.

After setup is complete, the CONTRAST method will be run for different vehicle

architectures from the MOA. If the total number of architectures represented in the

MOA is not prohibitive, all of the possible combinations will be run. If the total num-

ber is deemed too large, the combinations run through the method will be determined
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beforehand by assessment of the vehicle architectures that are most realistic.

When all of the runs have been completed an assessment of the CONTRAST

method’s performance can be done. This assessment will utilize the derived require-

ments for objective completion as stated above. First, the method must produce

growth projections for all specified vehicle architectures. This requirement is expected

to be easily completed because the growth models are able to produce projections for

any given inputs.

The second and third requirements deal with the accuracy of the method and its

ability to make comparisons between unique but similar vehicles. These requirements

will be assessed via direct comparisons of the results of similar vehicles. The first

proposed comparison will utilize a vehicle where the only change in architecture is

the number of engines. Depending upon the number of engines an increase or decrease

in reliability should be visible in the output. A second proposed comparison is the

difference between utilizing redundant avionics or single string avionics. In this case

an increase in reliability should be apparent when redundancy is utilized. Depending

on the number of architectures that are run through the CONTRAST method, many

different comparisons can be made. Ultimately, an exploration of the method output

will determine the most appropriate comparisons. The successful completion of the

second and third requirements will be supported using these comparisons.

The final test of the CONTRAST method will be to measure its required eval-

uation time. It is expected that the evaluation time will be fairly large due to the

number of architectures represented in the MOA. If the evaluation time is very long,

the analyst will not be able to analyze many of the architectures from the MOA. In

this case, the method may not add any value to the design process. On the other

hand, if the evaluation time is acceptable, many architectures can be run through the

method. This will add a great deal of value to the design process as the analyst will

be able to more fully explore the architecture space and evaluate design trades.
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The runtime of the CONTRAST approach will be deemed acceptable if the com-

pletion of all runs requires on the order of days to complete. The benchmark that

will be used for this metric is 64 hours, or two days and 16 hours. This is the length

between close of business at 5 PM on a Friday and open of business, or 9 AM on Mon-

day morning. It is considered acceptable to run the method over a weekend when the

computer running the models may otherwise be idle.

Due to the combinatorial nature of the MOA, 100 percent of the architectures

may not be evaluated during the 64 hour runtime. If this is the case, the percentage

of the total architectures evaluated during that time period will be recorded. If this

percentage is relatively low, a secondary acceptance criterion will be introduced. This

secondary criterion will extend the allowable runtime to one week. As long as all of

the desired output is produced, one week’s worth of computer time is still considered

acceptable for the method.

Based upon the tests proposed above, the fulfillment of the each of the derived

requirements can be either confirmed or denied. The primary research objective will

be considered satisfied if all of the derived requirements have been met. If this is the

case, the CONTRAST method can be considered successful in providing a traceable

approach for projection of launch vehicle reliability and safety during early conceptual

design.

5.1 Definition of Alternatives

The first step in carrying out the test problem is to fully define the architecture

space of interest. This will require the development of a matrix of alternatives, which

contains all of the architecture options of interest. As discussed above, the SLS

vehicle will be used as a model for setting up the alternatives. This vehicle was

chosen because it is currently undergoing design activities related to the future block

upgrades of its boosters and upper stage. Figure 38 gives a notional picture of the
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vehicle architecture. The SLS is a 2.5 stage vehicle, which has a liquid hydrogen

and liquid oxygen core with a liquid hydrogen and liquid oxygen upper stage. The

baseline SLS vehicle utilizes two solid rocket boosters, but advanced solid and liquid

boosters have been proposed for future versions.

Figure 38: NASA Space Launch System

5.1.1 Matrix of Alternatives

From the generic description of an SLS-like vehicle, the rows of the test problem

matrix of alternatives can be developed. These rows can be grouped into three

categories; upper stage, boosters, and core. This section will develop the options

contained within the rows of the test problem matrix of alternatives. Each of these

options will be discussed in more detail in Section 5.2, which develops the reliability

growth assumptions for each subsystem.

For the first category, the upper stage, five matrix rows can be defined. The first

two rows pertain to the engine type and number of engines on the upper stage. Both

the RL-10 and J-2X engines have been linked to the SLS program, making them

two obvious options for engine type [151]. In addition, it will be assumed that a new

engine development program may be possible for the upper stage. Due to the fact that
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the RL-10 is an expander cycle engine and the J-2X is a gas generator cycle engine,

the new engine development will be assumed to be a staged combustion cycle. The

addition of the new development staged combustion engine makes for three options

in the upper stage engine type row. The RL-10 engine type, however, will be broken

into two separate options in the matrix. These two options will represent an RL-10

with a fixed nozzle and an RL-10 with an extendable nozzle. Finally, the number of

engines for the upper stage will be set between 2 and 5.

The remaining three rows pertain to the power system type, power system re-

dundancy, and avionics system redundancy. The two redundancy rows will have two

simple options; single or redundant. The redundant option will represent a fully

redundant setup where there are two identical sets of hardware.

The power system type row will also contain two options. The first of these options

is a standard battery driven power system, while the second is a new technology called

integrated vehicle fluids (IVF). Integrated vehicle fluids was included in the matrix

because it is a new technology that could have a large impact upon future vehicle

capability. The IVF system, which integrates the power production and propellant

thermal management, is currently being developed by ULA [177, 178]. For future

upper stages this technology could have a profound impact upon the dry mass of the

vehicle and ultimately its payload delivery capability [177].

The next category of rows within the test problem matrix of alternatives pertains

to the vehicle boosters. Three rows of options can be identified, the first of which

is the booster type. As discussed above, the baseline concept for the SLS vehicle

will use a solid rocket booster that is derived from the STS program. For the next

block upgrade of the SLS vehicle advanced solids or liquid boosters have also been

proposed. The first three options in the booster type row will therefore be; STS SRB,

advanced solid, and advanced liquid. An additional option will be added to this row

in order to capture more exotic vehicle configurations. This option is a liquid fly-back
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booster. Although this type of booster has not flown to date, extensive studies have

been performed, which include the evaluation of fly-back booster concepts for the

Space Shuttle [8, 17, 140].

After the booster type row, two additional matrix rows are required specifically

for the liquid boosters. These rows cover the liquid booster engine type and the

number of engines per booster. The booster engine type row will contain three options

representing the three primary engine cycle types; gas generator, staged combustion,

and expander. These engine types were chosen to be generic in order to represent a

new development program for the liquid booster engine. The assumption of a new

development program for the booster engines is in line with the current developments

of the SLS program. Although testing has been carried out on a historical engine, the

F-1, the engine used on a future liquid booster will be produced using more modern

design and production techniques [104]. With the identification of generic engine

cycles for the booster engine type row, the number of engines per booster row options

were set to 2 or 3. The number of booster engines assumptions are based upon the

F-1 based and staged combustion engine based advanced boosters currently being

considered for SLS [33, 34].

The final category of rows within the test problem matrix pertains to the core

stage of the vehicle. This core stage burns in parallel with the two attached boosters

and continues to burn after booster jettison. To represent the core stage configuration

five rows will be used in the matrix of alternatives. The first two rows are engine type

and core number of engines.

Based upon the design progress of the SLS vehicle, the options for the core engine

type and number of engines are well defined. Early design studies performed for the

SLS show two relevant engine options along with two number of engine options [86].

The options used for the core stage in the test problem will therefore be four or five

RS-25 or RS-68 engines. In addition to the two engine number options an engine out
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row will be included. This row will allow for the modeling of an engine out capability

in the core stage. Engine out was included because it is a primary approach for

increasing vehicle reliability [88].

The remaining two rows for the core stage of the vehicle are identical to the

avionics and power redundancy rows for the upper stage. These rows will include

options for single or redundant power and avionics systems. As discussed above, the

redundant option represents full redundancy of the specified subsystem.

After identifying all of the rows and options for the test problem, the final matrix

of alternatives was assembled, which is shown in Figure 39. Section 5.1.2 will develop

the assumptions associated with the test problem matrix of alternatives.
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US engine RL-10C1
RL-10C2 

(extendable nozzle)
J2X

New engine dev.
(staged combustion)

US # Engines 2 3 4 5

US avionics Single Fully Redundant

US power Single Fully Redundant

US power type
Standard 
(Battery)

IVF

Booster type STS SRB Advanced Solid Advanced Liquid Fly-back Liquid

LRB Engine Type Gas generator Staged combustion Expander

LRB # Engines 2 3

Core engine RS-25 RS-68

Core # engines 4 5

Core engine out Yes No

Core avionics Single Fully Redundant

Core power Single Fully Redundant

Figure 39: Test problem matrix of alternatives based upon the SLS vehicle

5.1.2 Matrix Compatibilities

The matrix of alternatives illustrated by Figure 39 defines the architecture space that

will be analyzed for the test problem. Preliminary assumptions have been made in

order to identify a reasonable number of options for each row in the matrix; however,

additional assumptions are required. This section will outline the additional assump-

tions regarding in-compatibilities that will be enforced throughout the test problem.

201



www.manaraa.com

The additional assumptions for the upper stage will be presented first.

The upper stage options within the matrix address the engine type, number of

engines, power system type, avionics, and power redundancy. Within these options

two primary compatibilities will be enforced. First, all of the number of engines

options will not be compatible with all of the engine type options. This compatibility

issue is related to the resulting thrust-to-weight ratio of the upper stage. If lower

thrust engines are used, more engines are required to keep the stage in the desired

thrust-to-weight range. On the other hand, if high thrust engines are used, fewer

engines are required to meet the desired thrust-to-weight. A very low thrust-to-weight

translates to a vehicle that will either reach orbit very inefficiently or fail to reach

orbit altogether. A very high thrust-to-weight vehicle may require an excessively high

structural mass to support its high acceleration. In addition, the engine mass for the

high thrust-to-weight case will likely be very high.

Considering the options within the matrix of alternatives, the RL-10 engines are

in a lower thrust class than the J-2X and the new staged combustion engine. For

this reason, the RL-10 engines will be deemed compatible with all of the number of

engines options. The high thrust engines, however, will not be compatible with all of

these options. This is primarily true for the high number of engines cases where the

thrust-to-weight of the vehicle would be excessively high. The resulting compatibility

will enforce that the high thrust engines only be placed in a two engine configuration.

The second compatibility for the upper stage is related to the power system type

and power system redundancy. In Section 5.1.1 two options for upper stage power

system type were identified, standard, and integrated vehicle fluids. Due to the

added complexity of the integrated vehicle fluids system it will be assumed that full

redundancy cannot be achieved with this option. Therefore, only the standard power

system is compatible with the fully redundant power system option.

Two more compatibilities regarding the boosters and core will be introduced for
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the test problem matrix of alternatives. The compatibility for the booster options is

fairly obvious with the liquid engine type and number of engines rows only applicable

when either advanced liquid or fly-back liquid have been selected in the booster type

row. For the STS SRB and advanced solid options, the booster engine type and

number of engines are not applicable.

The additional compatibility for the core stage pertains to the engine out options

and the number of engines. As seen in the matrix, two options were included for core

number of engines, 4 and 5. A simple compatibility assumption will be made that

requires 5 engines in the core in order to enable engine out capability. The selection

of 4 engines in the core stage will therefore only be compatible with the selection of

no engine out capability.

Following the completion of the matrix of alternatives and in-compatibilities the

reliability growth assumptions can be set up for the test problem. The following sec-

tion will give a detailed description of the assumption set up for all of the subsystems

that were identified in the matrix of alternatives. This section will first identify the

subsystems that require reliability growth assumptions. Next, the specific subsys-

tems will be discussed in more detail and the appropriate growth assumptions will be

derived.

5.2 Reliability Growth Assumptions

From the matrix of alternatives in Figure 39, 20 individual subsystems that require

reliability growth assumptions can be identified. The full list of subsystems includes

8 for the upper stage, 7 for the boosters, and 5 for the core. These subsystems have

been broken out into five types: specific liquid engines, generic liquid engines, solid

rocket boosters, avionics and power, and structures. Each of the subsystems within

these five categories will be addressed in the subsequent sections.

Within these sections the assumptions for number of failure modes and probability
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of occurrence will be generated for all subsystems in the matrix of alternatives. The

remaining reliability growth assumption, the fix effectiveness factors, will be approxi-

mated using the same distribution for all of the subsystems. Due to the fact that the

FEF are the most difficult to accurately quantify, a single distribution will be used

to ensure consistency between the individual subsystems.

As discussed in previous sections, the fix effectiveness factors are affected primarily

by the management style and experience of the agency developing the launch vehicle.

The vehicles produced by the test problem matrix of alternatives are assumed to

have the exact same agency managing the program. Therefore, a standardized FEF

distribution can be considered as a reasonable assumption for the test problem.

During the example problem in Section 4.2 a uniform distribution shape was de-

cided upon for the FEF, which represents total uncertainty between a maximum and

minimum value. The example problem utilized a fairly narrow range for the FEF

values that was deemed appropriate for the manned STS vehicle. This distribution

was uniform between 90% and 99%. Since the SLS vehicle will eventually be manned,

the fix effectiveness factors for all of the subsystems in the test problem will also be

modeled as a uniform distribution between 90% and 99%. This distribution repre-

sents a very focused failure reporting and correction scheme that is consistent with a

manned vehicle program.

5.2.1 Specific Liquid Rocket Engines

The specific liquid rocket engines category pertains to pre-existing engines that were

identified as options in the matrix of alternatives. These engines are considered to be

currently operational, or in the case of the RS-25, recently retired. All of the engines

in this category have been flown multiple times on operational launch vehicles or

have undergone extensive developmental testing. Therefore, it is expected that each

of the engine options will benefit from the availability of previous test or flight data.
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Any data regarding reliability for these engines can be used to anchor the reliability

growth assumptions.

5.2.1.1 RL-10 Engines Assumptions

The first specific engines from the matrix of alternatives are the RL-10 options for

the upper stage. The RL-10 is a liquid hydrogen (LH2), liquid oxygen (LOX) burning

engine that utilizes an expander cycle [143]. The RL-10 family of engines originated

in the late 1950’s when Pratt & Whitney began development of their first liquid

rocket engine [134, 143]. The first static engine firing of the original RL-10 model

was completed in 1959, making it the world’s first LOX/LH2 rocket engine [154].

Since that time 10 operational models of the engine have been produced, which have

supported upper stages of launch vehicles such as Atlas, Delta, and Titan [134].

Two options for the RL-10 were included in the matrix of alternatives in order to

capture some of the variability between engine models within this family. The primary

design characteristic that the matrix of alternatives made an effort to capture is the

extendable nozzle feature that was added to later versions of the RL-10. This feature

was added in order to increase both thrust and Isp of the engine when operating

at altitude [143]. It is therefore important to capture in the test problem matrix

because it represents a possible trade between increased performance and increased

complexity. Therefore the first option in the matrix, labeled RL-10C1, is assumed

to have a fixed nozzle. The second option, the RL-10C2, represents the extendable

nozzle version of the engine.

To begin the setup of the reliability growth assumptions for the RL-10 engines a

schematic of the engine will be used to identify its key components. These components

can be considered as the primary “failure modes” of the engine subsystem. Figure 40

below gives a basic schematic of the RL-10 engine. As seen in the figure, the RL-10

layout is relatively simple. The design consists of a turbine driven fuel pump, which is
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attached via gear transmission to the oxidizer pump. Regenerative cooling is used on

the primary nozzle section and the fuel and oxidizer flow paths include flow control

valves and a main fuel shutdown valve.

Figure 40: Simplified RL-10 schematic [154]

From Figure 40 seven primary components can be identified as assumed failure

modes for the RL-10 reliability growth model. These components include the fuel

pump, oxidizer pump, gear transmission, feed control, combustion chamber, nozzle,

and the regenerative cooling heat exchange. These modes can be used for the first

RL-10 option in the test problem matrix of alternatives; however, additional modes

will need to be introduced for the extended nozzle version. Figure 41 illustrates the

RL-10 engine with its nozzle extension in the stowed position.

The stowed nozzle configuration illustrates three additional components that are

candidates for inclusion in the list of failure modes. The first additional component is

the extension system, which uses a motor to drive a pulley system that controls the

nozzle actuation [132, 143]. Upon extension of the nozzle, the second key component

is the latching joint between the fixed nozzle section and the movable nozzle section.

This latch joint must close properly in order to ensure desired nozzle performance.

Finally, an additional failure mode can be added for the movable nozzle section itself.
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Figure 41: RL-10 engine with stowed nozzle extension [154]

Using the basic RL-10 schematic in Figure 40 and the stowed nozzle picture in

Figure 41 the number of failure modes for the two engine options have been esti-

mated to be 7 and 10. These assumptions were derived using the basic parts count

type approach which was demonstrated during the example problem in Section 4.2.

The next required assumption for the RL-10 engine is the probability of occurrence

distribution for the failure modes. This distribution can be derived using a reliability

estimate from the RL-10 flight history.

In reference [71], Go discusses the flight history of upper stages that have utilized

the RL-10 engine between 1962 and 2005. In all, this flight history represents 190

vehicle configurations with RL-10 engines [71]. Out of 190 flights only 22 failures

occurred, of which 12 were attributed to the upper stage [71]. Go lists each of these

upper stage failures and their effects, which illustrates that only 3 of the 12 upper

stage failures stemmed from the RL-10 engine. Two of these engine failures were due

to turbopump failure caused by material contamination, while the third occurred due

to a boost pump failure [134].

207



www.manaraa.com

In very simple terms, this flight data suggests that the RL-10 engine has demon-

strated a probability of success of 187/190 or 0.9842. However, since these early

engine failures the RL-10 has achieved a 100% mission success rate [134]. Therefore,

the initial probability of failure of the RL-10 for the purpose of the test problem will

assume a mean reliability of 0.9842 with a standard deviation of 0.016, which allows

for the maximum reliability to approach 1.0 as shown by the mission success rate.

It is important to note that this reliability estimate is for the RL-10 engine as a

whole. However, the probability of occurrence values are needed for the failure modes

of the engine, which are one level of characterization lower. Therefore, an additional

step is needed in order to derive the probability of occurrence distribution for the

assumed RL-10 failure modes.

The process used to derive this distribution is described in more detail in Appendix

C. Approach 2 in Appendix C was used for the RL-10 probability of occurrence

distribution because the engine level mean reliability and standard deviation are

known. The resulting probability of occurrence distribution for the RL-10 failure

modes is Beta(0.078, 33.9). This distribution will be used for both of the RL-10

options in the matrix of alternatives because it is representative of the expected

reliability of the entire family of engines.

5.2.1.2 J-2X Engine Assumptions

The next specific liquid engine from the matrix of alternatives is the J-2X upper stage

engine. The J-2X is a liquid oxygen, liquid hydrogen burning gas generator cycle

engine [119]. The engine is derived from the flight proven, Apollo era, J-2 rocket

engine as well as the experimental J-2S engine [119]. Various components within the

J-2X design can also be traced to the RS-68 engine, which will be discussed later

[119]. Figure 42 below shows a basic diagram of the original J-2 engine, which shares

the same components as the J-2X.
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Figure 42: Simplified J-2 engine schematic [110]

Similar to the process taken with the RL-10 engine a basic parts count approach

will be used to identify the number of “failure modes” for the J-2X engine. As seen

in the figure, 7 primary components can be identified. These components include the

fuel and oxidizer turbopumps, heat exchanger, gas generator, feed control system,

main combustion chamber, and nozzle. The resulting parts count is the same as

what was seen for the first RL-10 option in the previous section. However, the J-2X

engine will still be differentiated from the RL-10 due to changes to the probability of

occurrence distribution.

The probability of occurrence distribution for the J-2X engine can be derived using

reliability data from the J-2 engine as well as the test history of the J-2X engine and

its components. As mentioned previously, the J-2 engine was flown on the Saturn V

launch vehicle during the Apollo program. During this time the J-2 engine was flown

11 times on the Saturn S-IVB third stage and 10 times on the S-II second stage [127].

The Apollo era flight history shows that in total, 61 J-2 engines were flown without

any loss of mission type failures.
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McFadden presents analysis of the Apollo era flight and test data for the J-2 engine

in reference [103]. Within this reference a database of engine data was collected and

the mean reliability of various liquid rocket engines was estimated. In addition to the

mean reliability estimates, McFadden also includes confidence bounds in the form of

5th and 95th percentile values. The J-2 reliability values given for the mean and

percentiles are 0.9916, 0.9697, and 0.9252 [103]. These values can be used to directly

estimate a reliability distribution for the J-2 engine, however, the more recent testing

of the J-2X engine should be considered first.

Testing of J-2X engine components began in 2006 with sub-scale hot fire testing

of the main injector [20]. Component testing continued on until the first system

testing began in February 2008, which lead to the successful completion of 6 power

pack assembly tests [20]. The summer of 2011 marked the first full scale test of

the development engine [119]. During the full scale testing four engine test articles

were successfully hot fired for a cumulative duration of five hours [137]. Only one

pre-mature shutdown event occurred during the testing of these engines [9].

Overall, the successes of the J-2X test program point to the engine being as reliable

as or more reliable than the original J-2. This is acknowledged by Buzzell, who notes

that the loss of mission reliability is expected to be an order of magnitude higher than

the heritage engine [20]. Considering this comment, an order of magnitude increase

from the mean reliability value given by McFadden for the J-2 would put the J-2X

reliability estimate near the highest percentile value of 0.9916. Since this value lies

on the upper portion of the data given by McFadden, the J-2 reliability data can be

used as a conservative starting point for the J-2X reliability.

To complete the probability of occurrence assumptions for the J-2X engine it was

assumed that the reliability distribution given by McFadden in reference [103] is a

logical starting point for the engine reliability. Since this reliability data gives both the

mean and percentile values an alternative approach to what was done for the RL-10
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can be used to derive the probability of occurrence distribution for the failure modes.

The details of this approach are discussed in Appendix C. Once the engine level

reliability distribution is available, the probability of occurrence distribution for the

failure modes can be estimated. The resulting probability of occurrence distribution is

Beta(0.24,54), which will be used in the reliability growth model for the J-2X engine.

5.2.1.3 RS-25 Engine Assumptions

The next liquid rocket engine is the RS-25, which is also known as the Space Shuttle

Main Engine. This engine is the first option for the core stage engine type row of

the matrix of alternatives. The RS-25 engine is a liquid oxygen, liquid hydrogen

burning staged combustion engine [131, 165]. The engine was developed in the 1970’s

by Rocketdyne for use on the Space Transportation System [154, 165]. Since its

inception, the RS-25 has benefited from an extensive test and flight history including

over 1 million seconds of cumulative test time and 135 successful operational flights

[11, 165]. Figure 43 provides an illustration of the RS-25 engine layout.

As discussed in Section 4.2.2 of the STS example problem, a parts count type

approach can be used to identify the number of failure modes for the RS-25. However,

an alternative approach will be applied for the test problem due to the extensive

history of the RS-25 engine. The extensive history of the engine means that ample

design, test, and operational data are available for estimating reliability. The number

of failure modes assumption for the RS-25 will therefore be made based upon FMEA

data from the development and early operational stages of the engine. A similar

statement could be made about the RL-10 engine; however, RL-10 design data such

as FMEA worksheets are not publicly available as is the case for the RS-25.
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Figure 43: Simplified RS-25 engine schematic [154]

The first data source that can be used for failure mode estimation is reference [70],

which is a technical report from early in the Space Shuttle program that presents an

SSME failure data review and diagnostic survey. Within this report, specific failure

modes of the SSME are identified and characterized based upon their severity and

likelihood of occurrence. This report also discusses the effects of the various failure

modes based upon their estimated cost and time between initiation of the mode and

engine loss or shutdown. Using these factors an overall risk value is assigned to each

failure mode ranging from loss of vehicle at 1.0 down to part is “OK” at 0.1. This

reference is by far the most detailed and most well suited for generating the reliability

growth assumptions for the RS-25 engine.

Two additional data sources can be used in tandem with reference [70]. In ref-

erence [83] a review of the Independent Orbiter Assessment (IOA) FMEA/CIL is

presented, which gives the number of critical items for each of the major subsystems
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in the Space Shuttle Orbiter. This overview gives a detailed list of the original critical

items that were identified prior to the IOA study and the remaining critical items

that were accepted at the conclusion of the study.

Another additional source, reference [111], also addresses the results of the IOA

study FMEA/CIL. This reference is a report presented to the congressional committee

on science, space, and technology, which requested an additional safety assessment of

the SSME. The report gives an extensive review of FMEA/CIL analyses, reliability

assessments, and proposed improvements to the RS-25.

From the three references above the number of failure modes for the RS-25 can be

easily estimated. First, the generic critical items list from reference [83] suggests that

the main propulsion system (MPS) contains 43 accepted critical items. This estimate

would suggest a maximum of 13 critical items per engine. However, the MPS includes

all three engines as well as the fuel and oxidizer cross-feed systems, which means the

critical items specific to the RS-25 may be fewer.

This observation is supported by the hazard analysis presented in the second

source from above, reference [111]. In this report a hazard analysis fault tree is

shown, which identifies 16 total SSME failure modes that could result in a loss of

crew and/or loss of vehicle. It also states that seven of the identified failure modes

are considered to be controlled through inspection and testing. Therefore, nine of

the sixteen failure modes are labeled as accepted risks for the SSME. Note that this

number represents nine accepted failure modes per engine.

When considering the first source, reference [70], this failure mode estimate is

further supported. Within the analysis in reference [70] a total of 190 failure modes for

the SSME are identified and categorized. A majority of these modes, however, fall in

the lower risk factor categories such as minor local damage or piece part damage. The

categories of interest are the top most levels, which include loss of vehicle, probable

loss of vehicle, and loss of engine. For these top three levels, 3 modes are placed in
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the loss of vehicle category, 7 modes fall in the probable loss of vehicle category, and

3 modes exist in the loss of engine category.

These results are in line with the previous sources, showing around 10 failure

modes per engine that can lead directly to a loss of vehicle event. It is also interesting

to note that the simplified parts count approach results in approximately 10 failure

modes for the RS-25. This estimate includes the major components such as; 2 fuel

pumps, 2 oxidizer pumps, 2 pre-burners, heat exchanger, combustion chamber, flow

control, and nozzle. Therefore, 10 failure modes for the RS-25 engine will be assumed

for the test problem.

After generating the estimate for number of failure modes, the probability of

occurrence for these modes is required. To estimate the probability of occurrence

distribution for the RS-25 a similar approach to what was used for the J-2X will

be applied. Within reference [103] a database of liquid engine tests and operational

flights is analyzed. From the data a mean reliability as well as 5th and 95th percentiles

are derived for many different liquid engines including the SSME. From this reference

the engine level reliability for the RS-25 will be assumed to have a mean of 0.9885

and percentiles of 0.9478 and 0.9994. This data will define the initial reliability of

the RS-25 in the test problem. From the mean and percentiles the probability of

occurrence distribution for the failure modes was estimated using the third approach

in Appendix C. The resulting probability of occurrence distribution for the RS-25

failure modes is Beta(0.09,54.5).

5.2.1.4 RS-68 Engine Assumptions

The final specific liquid engine for the test problem is the RS-68, which is used in the

core stage of the Delta-IV launch vehicle [155, 161]. The RS-68 is a gas generator cycle

engine that utilizes liquid oxygen and liquid hydrogen [81, 174]. Development of the

engine by Rocketdyne commenced in 1997, which resulted in certification for use on
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the Delta IV in 2001 [175]. A great deal of the eventual RS-68 design stemmed from

earlier NASA Space Transportation Main Engine conceptual studies, which focused

on reducing the cost and development time required to produce a new liquid engine

[175]. A basic schematic of the engine is shown in Figure 44 below.

Figure 44: Simplified RS-68 engine schematic [175]

Since the RS-68 was first certified for flight in 2001, its flight history is not nearly

as extensive as the other liquid engines that have been discussed. In addition, as was

the case with the RL-10, the RS-68 engine is still in production. This means any

detailed data regarding failure modes and effects is not publicly available. Therefore,

the simplified parts count approach will be used to generate the number of failure

modes assumption for the RS-68.

As can be seen in Figure 44, the RS-68 contains one oxidizer and one fuel tur-

bopump. Both pumps are connected to a gas generator that is centrally located on

the diagram. The oxidizer pump is connected to the heat exchanger, which then
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connects to the LOX tank pressurization system. An interesting feature of the RS-68

is the propellant flow from the fuel turbopump. Some of the flow from this pump is

fed directly to a secondary nozzle, which is used for roll control. In addition to the

pumps and gas generator, the RS-68 contains components for flow control as well as

a primary combustion chamber and nozzle. In all, the parts count for this engine

yields an estimate of 8 failure modes.

Now that the number of failure modes have been estimated, the probability of

occurrence for these modes must be determined. For the RS-68 the test and flight

histories can be used to generate an initial reliability distribution for the engine. From

this distribution the probability of occurrence values will be determined.

The RS-68 is considered to be the first liquid rocket engine that was fully designed

using computer-aided design and analysis programs [155]. Due to the extensive use

of computer-aided design as well as new manufacturing approaches, the length of

the flight certification test program was decreased significantly compared to previous

engines [155, 175]. In all, only 183 tests were performed for flight certification, which

is a factor of four smaller than the number of tests required of the SSME [175].

Through these tests no major failures were encountered and less than 20 pre-mature

test cut-offs were required due to engine anomalies [175]. In addition, the RS-68 has

been flown on 27 total Delta IV flights with no loss of mission failures [89].

The flight and test history of the RS-68 show a near perfect operational record for

the engine. Although it has demonstrated a near 100% reliability, the predicted relia-

bility of the engine is more appropriate for use in the test problem. This is primarily

due to the fact that the engine has only flown 27 operational flights, which is a small

number compared to the RL-10 or SSME. Wood notes that reliability predictions for

the RS-68 have been carried out using comparative design assessments that take into

account parts count, complexity, fabrication, inspection, and operating environments

[175]. From this assessment comparisons were drawn to detailed historical data from
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the SSME, which resulted in a predicted reliability of 0.9987 for the RS-68 [175].

For the test problem a mean reliability of 0.9987 will be assumed for the RS-68.

Similar to the RL-10 engine, the standard deviation for the RS-68 will be assumed as

0.0013, which will allow the maximum reliability to approach 1.0 as demonstrated by

the flight history. As with all of the other specific liquid engines, the probability of

occurrence distribution for the RS-68 failure modes was derived using the procedures

described in Appendix C. Since the mean and standard deviation of the engine relia-

bility were defined, the second approach from Appendix C was used. This derivation

resulted in a probability of occurrence distribution of Beta(0.0759,36.02), which will

be used for the RS-68 in the test problem.

5.2.2 Generic Liquid Rocket Engines

After developing the assumptions for the specific liquid rocket engines from the matrix

of alternatives, the generic engines can be assessed. These generic engines represent

three different cycle types; gas generator, staged combustion, and expander. All

three of these engines will be options for the advanced liquid booster and the fly-back

booster. The generic staged combustion engine will also be an option for the upper

stage engine type. The assumptions will be setup based upon a parts count from a

generic description of the engine layout.

5.2.2.1 Generic Gas Generator Cycle Assumptions

The first engine cycle type to consider is the gas generator. This engine type will be an

option for the advanced liquid booster and the fly-back liquid booster from the matrix

of alternatives. The advanced booster utilizing a gas generator engine represents a

booster architecture that is currently being considered for the SLS vehicle [33, 34].

The gas generator engine for this concept is based upon the F-1 engine from the

Apollo era [33].
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The gas generator cycle is one of the most common engine cycles due to its rela-

tive simplicity[156]. Gas generator engines typically have lower operating pressures,

smaller inert masses, and lower development costs [156]. Although this cycle provides

multiple benefits, it generally supplies less performance with a specific impulse a few

percent lower than other cycles [156]. Figure 45 below gives a simplified diagram of

a gas generator cycle engine.

Figure 45: Simplified gas generator cycle engine schematic [156]

As seen in the figure, the engine cycle utilizes a gas generator to drive the tur-

bine(s), which are attached to the fuel and oxidizer turbopumps. Gas generator

engines can either be open or closed cycle depending upon the path of the turbine

exhaust gases. An open cycle engine will dump this gas overboard through a low

area ratio nozzle, while a closed cycle engine will aspirate the exhaust gases into the

diverging section of the nozzle [156]. The latter option is shown in Figure 45.

From the basic schematic the primary components of a generic gas generator can

be identified. These components include the fuel turbopump, oxidizer turbopump,

turbine, gas generator, feed control, heat exchanger, combustion chamber, and nozzle.

The simple parts count approach therefore yields an estimate of 8 primary failure
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modes for the generic gas generator.

After estimating the number of modes for a gas generator engine, the generic

probability of occurrence distribution must be determined. Due to the fact that a

generic engine is being considered, there is no reliability data to base the probability

of occurrence values on. Therefore, the generic probability of occurrence distribution

for a complex system from Experiment 1 and 2 will be applied. This distribution,

Beta(0.22,8.75), was demonstrated within both experiments as well as the example

problem in Section 4.2. The results of the example problem illustrated that this

generic probability of occurrence distribution produced satisfactory results in terms

of prediction accuracy. Thus, the generic distribution will be used for all of the generic

liquid rocket engines as well as any subsystems that do not have reliability data for

comparison.

5.2.2.2 Generic Staged Combustion Cycle Assumptions

The next engine type to consider is the staged combustion cycle. This generic engine

will be included in the options for the advanced liquid booster, fly-back liquid booster,

and upper stage engine type. It will be assumed that the generic layout of the engine

will not differ between the two applications of the engine.

The staged combustion cycle is a closed cycle that is more complex than a gas

generator [156]. It operates with a higher turbine flow and requires higher pump

discharge pressures to overcome the extra pressure drop due to the pre-burner [156].

Staged combustion engines also tend to operate at much higher chamber pressure

because the turbine exhaust flow is injected into the main combustion chamber [156].

Although staged combustion engines tend to be heavier and more complex, they do

provide a high specific impulse [156]. A basic schematic of a staged combustion engine

is shown in Figure 46.
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Figure 46: Simplified staged combustion cycle engine schematic [156]

The staged combustion cycle utilizes a coolant flow in which the liquid fuel is fed

through a cooling jacket around the engine nozzle and combustion chamber [156].

After heating, the fuel is fed to the pre-combustor, which burns all of the fuel along

with part of the oxidizer. The high-energy gas from the pre-combustor is used to drive

the turbines for the turbopumps [156]. Ultimately, the exhaust gas from the turbines

is injected into the combustion chamber where it is burned with the remainder of the

oxidizer [156].

For a generic staged combustion engine the simple parts count approach yields

eight primary components. These components include the fuel turbopump, oxidizer

turbopump, pre-combustor, turbines, heat exchanger, nozzle, and combustion cham-

ber. It is important to note that multiple pre-combustors and multiple turbopumps

may be used in a staged combustion engine. For example, the SSME contains two

pre-burner chambers as well as two pumps for each of the fuel and the oxidizer [156].

To account for the possibility of multiple pumps or multiple pre-combustors, the

assumed number of failure modes for the generic staged combustion engine will be
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increase to ten.

As explained in the previous section, the generic liquid engines do not have pre-

vious reliability data to draw from in order to generate the probability of occurrence

assumptions. For this reason, the generic probability of occurrence distribution from

the experiments section will be used for all of the generic subsystems. This distri-

bution, Beta(0.22,8.75), is meant to represent a “complex system” and was shown to

produce acceptable results in terms of prediction accuracy.

5.2.2.3 Generic Expander Cycle Assumptions

The final generic engine is the expander cycle liquid rocket engine. This engine option

will be available for the advanced liquid and fly-back booster options in the matrix

of alternatives.

Similar to staged combustion, the expander cycle is a closed cycle [156]. The

expander cycle also uses a cooling jacket to supply energy to the fuel flow in order

to drive the turbopumps and regeneratively cool the engine nozzle and combustion

chamber [156]. This cycle is different from staged combustion in that it does not

utilize a pre-burner. Therefore, expander cycle engines are relatively simple and have

a low engine mass [156]. These engines also provide higher performance than a gas

generator cycle [156]. Figure 47 below gives a simplified layout of an expander cycle

engine.

In the expander cycle the fuel and oxidizer are fed through their respective tur-

bopumps. These turbopumps are driven by the coolant flow of fuel through the nozzle

cooling jacket [156]. The turbine exhaust and the oxidizer flow are then injected into

the combustion chamber. All of the propellants in an expander cycle engine are fully

burned in the combustion chamber and expanded efficiently in the exhaust nozzle

[156].
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Figure 47: Simplified expander cycle engine schematic [156]

From the simplified layout of the expander cycle engine a parts count of 7 can

be obtained. This parts count includes the fuel turbopump, oxidizer turbopump,

turbine, feed control, heat exchanger, nozzle, and combustion chamber. As with

the other generic engines the simple parts count failure mode assumptions will be

accompanied by a generic probability of occurrence distribution. This distribution

is Beta(0.22,8.75), which was implemented successfully in the example problem in

Section 4.2.

5.2.3 Solid Rocket Boosters

The next subsystems to address from the test problem matrix of alternatives are the

solid rocket boosters. Two options for the solid boosters were included in the matrix;

the STS SRB and advanced solid. The first option will be based upon the reusable

solid booster that was implemented for the Space Shuttle. The second option is a

proposed future upgrade to the shuttle solid booster that aims to reduce the booster

mass in order to improve performance.

The STS SRB was described in more detail during the example problem in Section

4.2. In this section the number of failure modes for the STS SRB was estimated to
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be 7 for the example problem. However, the SRB for the test problem will have more

failure modes. Although the SLS SRB is derived from the shuttle SRB, the baseline

design contains an additional segment [3]. The new derivative of the booster will also

produce more thrust, while using new technologies and materials to reduce mass [3].

To generate the number of failure modes assumption for the STS derived SRB a

review of its basic components is required. As noted above, the booster will consist of

5 fuel segments. In addition to these segments an igniter is placed atop the booster and

the nozzle assembly lies on the bottom. The nozzle assembly also contains mechanisms

for thrust vector control and launch pad tie down for the entire vehicle. The booster

nose cone above the igniter segment typically houses the avionics package. The solid

rocket booster components also include the primary attach points between the core

of the vehicle and the booster itself. The forward attach point is the primary load

bearing structure, while an aft attach point may be used for stability. From the

generic description of the components within the solid rocket booster an estimate of

12 failure modes will be used for the test problem.

The second solid booster to consider is the advanced solid. This booster is a

proposed upgrade to the baseline STS derived booster. The advanced booster will

implement new technologies, such as composite casings, to improve upon the per-

formance of the baseline booster. The design for the advanced solid has not been

determined to this point, however a concept has been illustrated by ATK that con-

tains four segments with a redesigned composite casting and nose cone [10]. Since

the state of the advanced booster design is still in flux the test problem will consider

it to have the same number of components as the STS derived SRB. The differenti-

ating factor between the two boosters will therefore be the initial reliability of each

concept. The probability of occurrence for the STS derived SRB will be estimated

based upon the historical reliability of the STS SRB. The advanced booster will be

treated as a generic complex system, which will use the same probability of occurrence
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distribution as was used for the generic liquid rocket engines.

In total the STS SRB flew 135 missions with only 1 major failure on STS-51L

[27]. In addition, 52 full scale tests of the booster were performed in support of the

Space Shuttle program [107]. This test and flight history suggests that 322 boosters

have operated with only 1 major failure. A ratio of 1 failure in 322 trials gives

a demonstrated reliability of 0.9968. Considering only the operational flights, the

demonstrated reliability of the SRB is 0.9962. Therefore, the initial reliability of the

STS derived SRB will be assumed at 0.9962 for the test problem. The procedures

for deriving the probability of occurrence distribution from this value are presented

in Appendix C. The results from the second approach in the Appendix C gives a

probability of occurrence distribution of Beta(0.004,11.4) for the STS SRB.

5.2.4 Avionics and Power

The next subsystems from the test problem matrix of alternatives are the avionics

and power systems. These subsystems will be included on the core and upper stage

of the vehicle. Note that the solid and liquid boosters also typically contain avionics

of their own, however, it was decided that the core and upper stage avionics were

more critical to a successful launch. The booster avionics are therefore secondary to

the main flight computers on the core and upper stage.

Both the core and upper stage avionics will utilize the same probability of occur-

rence distribution for their respective failure modes. This distribution has been dis-

cussed multiple times before and represents the probabilities of occurrence for a com-

plex system. The core and upper stage avionics subsystems will use Beta(0.22,8.75)

for the probability of occurrence.

The number of failure modes assumption for the core and upper stage avionics,

however, will differ slightly. A difference in number of failure modes was implemented

in order to capture the higher complexity that is expected of the core avionics system.
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This complexity is due to the core avionics handling the guidance, navigation, and

control of the vehicle for a majority of the trajectory. In addition, the core avionics

will communicate with the booster avionics and control the staging events such as

booster jettison and core/upper stage separation.

To generate the number of failure modes assumption for the core avionics, FMEA

data from the STS can be used. This data will be used because the functions of

the Shuttle avionics system during launch are considered to be similar to that of the

vehicle in the test problem. During ascent the orbiter avionics handle the guidance,

navigation, and control of the vehicle, which has two boosters and three liquid engines.

It also handles the throttling and staging events throughout the trajectory. The

core avionics system in the test problem will have similar functions, handling the

guidance, navigation, and control for the vehicle with two boosters and four or five

liquid engines. The core avionics will also handle two staging events, which is similar

to the orbiter avionics that handle booster separation and external tank jettison.

During the late 1980’s an independent study of the orbiter FMEA/CIL analyses

was performed by McDonnell Douglas. From this study, three reports regarding the

orbiter avionics were produced, which are applicable to the test problem core stage

avionics assumptions. The first of these reports, produced in 1986, presents a detailed

look at the failure modes and critical items within the data processing system of the

orbiter [97].

Within the report in reference [97], seven primary components within the data

processing system are assessed. From this assessment a list of 78 total failure modes

from the FMEA are identified along with 23 critical items. The 78 identified failure

modes were then classified into 6 failure criticality levels. The first of these levels is

of most interest for the example problem because it represents a loss of crew or loss

of vehicle event [97]. Two of the 78 total failure modes are classified in this level for

the data processing system. Therefore, this portion of the avionics subsystem will be
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assumed to contribute 2 failure modes.

The next report on the orbiter avionics addresses the guidance, navigation, and

control portion of the orbiter avionics. This report assesses the GNC system in three

individual segments; major components, function switches, and power switches [158].

In total, the GNC study identified 175 failure modes and 36 critical items. Similar to

the previous study, six criticality levels were used to divide these failure modes. The

resulting criticality assessment resulted in 8 failure modes being classified as causing

loss of crew or vehicle. Therefore, 8 modes can be assumed for the GNC portion of

the avionics system.

The third report from the orbiter FMEA/CIL assessment addresses the instru-

mentation segment of the avionics system. This report divides the instrumentation

system into 11 individual categories of equipment [67]. From all of these categories

the total number of failure modes was identified as 107 with 22 critical items [67].

This report also uses the same 6 level criticality assessment as discussed above. For

the instrumentation system none of the failure modes were assigned to the first criti-

cality level. Since none of the failure modes were classified in the top criticality level,

the second level failure modes will be added to the assumptions for the test problem.

This will give a more conservative estimate for the avionics failure modes. Therefore,

two additional modes will be contributed to the total number of avionics subsystem

modes.

The review of the three assessments of the orbiter avionics returned an estimate

of 12 failure modes that would directly cause a loss of crew or loss of vehicle event. In

order to make the test problem assumptions for the core avionics more conservative,

this number of failure modes will be increased to 15. This increase was implemented

because the core stage avionics will control the same number of boosters as the STS

but more liquid rocket engines. In addition, the avionics system for the core stage will

operate in a different environment than the orbiter avionics, which could contribute
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more failure modes.

As discussed previously, the upper stage avionics will be assumed to have fewer

failure modes than the core avionics. This is due to the expected reduction in com-

plexity of the upper stage avionics. A reduction in complexity is expected because

the upper stage avionics will handle fewer staging events, fewer engines, and a much

smaller instrumentation system than the core. From the orbiter avionics assessment

12 failure modes were identified that would cause a loss of crew or loss of vehicle. A

reduction in complexity warrants a decrease in the number of assumed failure modes

for the upper stage avionics. In order to preserve a relatively conservative estimate,

the number of failure modes for the upper stage avionics will be reduced to 10. There-

fore, the core stage avionics will be assumed to contain 5 more failure modes than the

upper stage to account for additional engines, separation events, and instrumentation.

After developing the assumptions for the generic avionics subsystems in the core

and upper stage, the power subsystems can be considered. Similar to the avionics,

the core power subsystem number of failure mode assumption will be developed based

upon STS FMEA data. The upper stage power system will be developed based upon

a generic parts count approach. This parts count approach will be used for both

the standard and integrated vehicle fluids options in the matrix of alternatives. The

probability of occurrence distribution will again be assumed as a generic complex

system, which is Beta(0.22,8.75).

The core power subsystem number of failure modes assumption will be generated

based upon STS FMEA/CIL data for the orbiter power system. As with the core

avionics subsystem, the power system is considered to be similar to that of the STS

vehicle with one major difference. This major difference is due to the inclusion of the

fuel cells on the orbiter, which were required in order to supply power to the vehicle

on orbit and during the crew return to landing. For the test problem the standard

power subsystems will be assumed to be battery driven due to the expendable nature
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of the vehicle. Typically, fuel cells are only required for extended duration missions

or on reusable vehicles [92].

In reference [145] an assessment of the orbiter power system FMEA/CIL is pre-

sented. This assessment was carried out using the same ground rules and assumptions

as the reports discussed above for the avionics subsystems. The power subsystem re-

port identifies 489 total failure modes and 163 critical items for the orbiter [145]. All

of the identified failure modes are divided into six levels of criticality with loss of mis-

sion or vehicle as the top most level. A total of 12 failure modes were categorized in

the top level for the orbiter power subsystem. Although the orbiter power subsystem

contains fuel cells and the core stage does not, the 12 failure modes identified in the

FMEA/CIL assessment will be used as the assumption for the core power subsystem.

Exclusion of fuel cells means the core power subsystem is expected to have 12 modes

or less based upon the orbiter assessment. Therefore, the number of modes will not

be adjusted in this case in order to ensure a conservative assumption.

The number of failure modes for the standard upper stage power subsystem can

now be estimated using a generic parts count approach. First, a typical list of equip-

ment for an upper stage power subsystem must be generated. Since the power subsys-

tem is assumed to run off of battery power instead of fuel cells, the first components

on the list are batteries. Depending upon the electrical demands of the other subsys-

tems, multiple batteries may be required. For example, the S-IVB upper stage on the

Saturn V vehicle contained three 28-volt DC batteries and one 56-volt DC battery

[12]. In addition to one or more batteries, a typical power subsystem equipment list

will include a power control unit, signal conditioning unit, and distribution unit [92].

The generic upper stage power subsystem for the test problem will therefore be as-

sumed to contain 6 primary components. These components include three batteries,

power control, conditioning, and distribution.

The final power subsystem to consider is the integrated vehicle fluids (IVF) option
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for the upper stage. This option was included in order to capture a new power

system concept that is currently under development. The number of failure modes

assumption for the IVF option will be developed based upon a generic description of

the system.

The IVF system aims to combine multiple functions on an upper stage vehicle in-

cluding tank pressurization, attitude control, and electrical requirements [178]. The

system utilizes the propellants already on board the stage to power an internal com-

bustion engine, which in turn drives other elements [178]. Combining all of these

functions into a single system allows for a significant reduction in vehicle dry mass,

which results in an increased payload performance [177].

In reference [177], Zegler gives a description of the IVF components and a schematic

illustrating the system layout. Using the provided descriptions and layout the list of

primary components for an IVF system was generated. These components include

gaseous oxygen and gaseous hydrogen tanks, fluid controls, hydrogen pump, oxy-

gen pump, internal combustion engine, starter battery, attitude control unit, and

instrumentation. In all, 10 primary components were identified for the IVF system.

Therefore, the assumed number of failure modes for this option in the matrix of

alternatives was set to ten.

5.2.5 Structure, Tanks, Other

The final subsystems to consider for the test problem include structures, attitude

control, tank pressurization, etc. These subsystems are not listed directly in the

matrix of alternatives and will be grouped together when considering their reliability

growth. Although options are not listed in the matrix, reliability growth curves for

these subsystems are needed for a more complete analysis. An extra “structure,

tanks, and other” subsystem will therefore be added to the upper stage, core, and

liquid boosters to capture these additional components.
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The first “structure, tanks, and other” subsystem will be developed for the upper

stage. As discussed previously, it is assumed that the upper stage contains liquid

oxygen and liquid hydrogen propellant. The upper stage will also require its own

attitude control system, which will operate after core separation. The list of addi-

tional upper stage components therefore includes the oxygen tank, hydrogen tank,

propellant feed system, tank pressurization, separation system, and attitude control.

This generic list leads to an assumption of 6 failure modes for the structure, tanks,

and other subsystem on the upper stage.

For the liquid booster, two separate “structure, tanks, and other” subsystems will

be required. These subsystems correspond to the advanced booster and the fly-back

liquid booster options. For the standard advanced booster the following additional

components were assumed: oxidizer tank, fuel tank, core attach struts, launch pad tie

down, propellant feed system, tank pressurization, and separation. This list results

in a number of failure modes assumption of 7 for the standard liquid booster. The

fly-back booster option will have additional components to that of the standard liquid

booster. In this case, two wings as well as control surfaces will be added to the list of

components. Therefore, 10 failure modes will be assumed for the “structure, tanks,

and other” subsystem in the fly-back liquid booster.

The final “structure, tanks, and other” subsystem will be contained in the core

stage. As mentioned previously, the core is assumed to house liquid oxygen and liquid

hydrogen propellants. The generic list of additional components therefore contains the

oxygen tank, hydrogen tank, propellant feed system, tank pressurization, and attitude

control. In addition, the core stage will have a load bearing intertank section, which

is the primary attach point for the two boosters. From this list, a total of 7 failure

modes will be assumed for the core stage “structure, tanks, and other” subsystem.

For all of the “structure, tanks, and other” subsystems the generic probability

of occurrence distribution for a complex system will be used. This distribution,
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Beta(0.22,8.75), was used successfully during Experiment 1 and 2. In addition, it was

used during the example problem in Section 4.2, which showed favorable results in

terms of prediction accuracy.

5.2.6 Reliability Growth Assumptions Summary

The previous sections developed reliability growth assumptions for 20 different sub-

systems from the test problem matrix of alternatives. The growth assumptions ad-

dressed within these sections were the number of failure modes and probability of

occurrence. These assumptions were developed using previous data, schematics, and

generic system descriptions depending upon the type and heritage of each specific

subsystem. In Table 21 a summary of all the reliability growth model assumptions

is presented. Note that the final growth model assumption, fix effectiveness factor,

will be modeled using the same uniform distribution for all the subsystems. This

distribution is U(0.90,0.99) and is not shown in the table.

Two additional assumptions will be used in order to carry out the test problem.

First, the total number of flights that will be projected for each vehicle architecture

needs to be set. Based upon the experience gained from the previous experiments

and the example problem, most vehicle growth curves tend to reach a mature level

somewhere between 150 and 250 flights. In the example problem 300 total flights were

used, however, the final 50-100 flights were relatively uninteresting. The number of

flights for the test problem was set to 250, which is expected to capture the relevant

sections of the growth curves for all vehicles in the matrix of alternatives. In order to

keep the runtime at a reasonable level, the reliability growth curves will be evaluated

at a total of 50 steps in time or once every 5 equivalent flights.

The final assumption for the test problem is the number of trials per step in time.

This assumption represents the number of random draws that will be taken from

the subsystem reliability growth curves at each step in order to generate the system
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level reliability distribution. During the example problem, 1000 repetitions were used

successfully. However, this problem contained only a single vehicle architecture. In

all, the test problem contains just over 20,000 vehicle architectures. Therefore, the

number of repetitions was reduced to 750 per step in order to keep the runtime at a

reasonable length.

Note that the number of repetitions may have some effect on the output mean

reliability at each step. Appendix D presents a trade study exploring the effects of

increasing or reducing the number of trials per step. This study ultimately helps

define the optimal number of trials that will produce the correct mean value while

keeping runtime to a minimum.
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Table 21: Summary of the reliability growth assumptions for the test problem

Subsystem # of Modes Probability of Occurrence

RL-10C1 7 Beta(0.078,33.9)

RL-10C2 10 Beta(0.078,33.9)

J-2X 7 Beta(0.24,54)

US Staged Combustion Engine 10 Beta(0.026,9.85)

US Avionics 10 Beta(0.026,9.85)

US Standard Power 6 Beta(0.0421,10.04)

US Integrated Vehicle Fluids 10 Beta(0.026,9.85)

US Structure, tanks, other 6 Beta(0.0421,10.04)

STS SRB 12 Beta(0.004,11.4)

Advanced Solid 12 Beta(0.022,10.13)

LRB Gas Generator Engine 8 Beta(0.031,9.95)

LRB Staged Combustion Engine 10 Beta(0.026,9.85)

LRB Expander Engine 7 Beta(0.046,12.03)

Standard LRB other 7 Beta(0.046,12.03)

Fly-back LRB other 10 Beta(0.026,9.85)

RS-25 10 Beta(0.09,54.5)

RS-68 8 Beta(0.0759,36.02)

Core Avionics 15 Beta(0.02,10)

Core Power 12 Beta(0.022,10.13)

Core Structure, tanks, other 7 Beta(0.046,12.03)
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5.3 Results

After completion of the test problem assumptions the growth models for each sub-

system were setup using the Python coding language. The component and matrix

row classes shown in Appendix A were then used to generate the appropriate FTA

equations for every architecture. As noted in the introduction to the test problem,

the three derived requirements for research objective completion must be examined.

Prior to examining the results and demonstrating the utility of the CONTRAST

method, these requirements will be addressed. Section 5.3.1 will examine the derived

requirements and check that the method has indeed met them. After discussion of

the requirements, Section 5.3.2 will discuss the results of the test problem in more

detail. This section will demonstrate the utility of the CONTRAST method and will

include examples of potential uses of the output reliability growth data.

5.3.1 Derived Requirements Check

The first requirement to be addressed also happens to be the easiest to evaluate;

the total required runtime of the CONTRAST method. Recall that the original

benchmark for the runtime was set to 64 hours, which represents the amount of time

between close of business on a Friday evening and open of business on Monday morn-

ing. This benchmark was selected because during this period of time, computers are

typically standing idle. For the test problem matrix of alternatives, the total runtime

for all architectures was tracked. This runtime totaled only 39 hours for 20,160 ar-

chitectures, which is significantly below the original benchmark. It is estimated that

an additional 10,000 to 15,000 architectures could be completed within the original

benchmark time frame.

The introduction of the test problem also discussed a secondary time requirement

in the case where the CONTRAST method could not evaluate all of the architectures

within the benchmark time frame. This secondary time frame was set to an entire
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week of runtime on a single computer. Using the measured runtime from the test

problem, it is estimated that a single computer could produce reliability growth curves

for approximately 87,000 architectures in a week’s worth of runtime. Therefore, the

run time of the test problem shows that the method is able to handle very large

architecture spaces within a reasonable time frame. This is especially true if multiple

computers can be utilized for running the reliability growth projections. Running

multiple computers over a weekend or for an entire week would enable the analysis of

hundreds of thousands of architectures.

After confirming that the runtime of the CONTRAST method lies in an acceptable

range, the first derived requirement can be addressed. This requirement states that

the method must be able to produce quantitative reliability estimates for all vehicles

within the defined architecture space. For the test problem, the architecture space

was defined using both heritage and new technologies. The new technologies were

included in the matrix of alternatives in order to demonstrate the ability of the method

to produce reliability estimates for novel concepts.

The addition of such concepts also helps to show that the third derived requirement

has been met. This requirement states that the method must be flexible enough to

produce reliability estimates for any vehicle concepts within the defined architecture

space. Figure 48 below shows the mean reliability projection for all 20,160 architec-

tures in the test problem matrix of alternatives. This figure ultimately confirms that

the first and third derived requirements have indeed been met.
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Figure 48: Reliability growth projections for all test problem architectures

The final requirement to address before examining the results in detail is the

ability of the method to differentiate between unique but similar vehicles. This was

the second derived requirement from Section 2.4. In order to demonstrate that this

requirement has been met, multiple unique but similar vehicles will be compared

using the reliability growth output.

First, consider a vehicle with a fixed booster and upper stage. For the following

example, the boosters will be fixed as the STS SRB. The upper stage has been set to a

two J-2X configuration with no avionics or power redundancy and a standard battery

operated power system. Figure 49 and Figure 50 show the remaining architectures

after the previous settings were fixed.

The first unique but similar option to consider is the trade between core engine

out and no engine out. This trade is illustrated by Figure 49, which has marked the

cases by core engine out. As can be seen in this figure, there is a very noticeable split

in mean reliability between the engine out and no engine out cases. The lower band

of cases represents no engine out capability, while the higher band represents vehicles
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with engine out capability. The output of the CONTRAST method has obviously

captured the expected result in this case.
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Figure 49: Reliability growth projections marked by core engine out
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Figure 50: Reliability growth projections colored by core avionics redundancy
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The second figure, Figure 50, splits out the cases that have core engine out ca-

pability. This comparison is looking at vehicles with a fixed booster and fixed upper

stage, which also have a core engine out capability. The unique but similar option

in this case is the core avionics redundancy, which have been colored black or gray

for single and redundant, respectively. For this case there is less of a difference than

what was seen for the engine out trade. However, the single and redundant options

can still be easily differentiated from one another.

Two more interesting unique but similar cases can be generated by fixing the

core and booster of the vehicle and allowing some of the upper stage parameters to

change. These cases will look at the number of engines on the upper stage as well

as the avionics redundancy. First, the upper stage engine type will be set to an RL-

10C1, the power type to battery, and no redundancy will be used. The booster will

be fixed to STS SRB and the core will be set to a four RS-25 engine architecture with

no avionics or power redundancy.

Figure 51 shows the remaining vehicle architectures for the first case, colored by

the upper stage number of engines. In this figure a very clear trend can be seen,

which shows an incremental decrease in expected mean reliability with an increase

in number of engines. This is an intuitive result as an increase in number of engines

increases the number of points of failure for the stage.

The next upper stage unique but similar case can be seen in Figure 52. This figure

illustrates the difference between upper stages with and without avionics redundancy.

In this case the number of engines has been set to four. As seen in the figure, this

case is not nearly as pronounced as the number of engines case. However, the output

still shows a discernable difference between the two options.
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Figure 51: Reliability growth projections colored by upper stage number of engines
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Figure 52: Reliability growth projections colored by upper stage avionics redun-
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The four examples given above are just a few of many unique but similar concepts

that can be compared using the output of the CONTRAST method. The results of the

test problem can therefore be used to conclude that the original derived requirements

to meet the research objective have been met. The test problem results have given

quantitative estimates for all vehicles in the architecture space, including a few new

concepts. These results have also demonstrated the CONTRAST method’s ability to

compare unique but similar vehicle concepts.

5.3.2 Detailed Test Problem Results

After addressing the derived requirements for objective completion, the test problem

results can be looked at in further detail. This section will first explore the data that

was generated for the architectures within the test problem matrix of alternatives.

Through data exploration, preferred analysis views for the CONTRAST method’s

results will be identified. Following the simple data exploration a discussion on more

complex uses of the output data will be presented. This discussion will include the

evaluation of the probability of meeting a desired reliability requirement in a set

number of launches or the required time to reach said requirement. It will also

present an application of the method in which block upgrades can be analyzed.

5.3.2.1 Data Exploration

Exploration of the test problem data will start from Figure 48, which plots the mean

reliability versus flight number for all of the architectures. From this plot, simple

data filters can be used to view how the full design space is partitioned based upon

the various architecture options. The initial filtering operations will allow the analyst

to quickly view the effects of each architecture option on reliability. The first filtering

example will look at the liquid versus solid booster types.

In Figures 53 through 56, four plots are given of all of the reliability growth data

with different booster selections. The first two, Figure 53 and Figure 54, show all
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of the architectures with solid boosters. The other two, Figure 55 and Figure 56

show all of the vehicles with liquid boosters. When moving from the STS SRB to

the advanced booster, the section of selected points shifts slightly downward. This

immediately tells the analyst that the highest reliability vehicles within the data

utilize STS derived solid boosters. On the other hand, the two liquid booster plots

do not show a recognizable difference between the advanced liquid booster and the

fly-back liquid booster. It does however show that the liquid booster cases will tend

to have lower reliabilities than the solid cases.

The basic filtering results shown in Figures 53 through 56 are very intuitive. Due

to its flight heritage, the STS SRB option is expected to perform best in terms of

reliability, while the advanced solid falls slightly below. Both of the liquid boosters

require development of a new liquid rocket engine, which explains the generally lower

reliability values. Note that some overlap between the four options does exist. Al-

though the STS SRB vehicles tend to be the highest reliability, there are many cases

in which an advanced booster or liquid booster architecture will perform better in

terms of reliability.
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Figure 53: Reliability growth projections with STS SRB highlighted
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Figure 54: Reliability growth projections with Adv. SRB highlighted
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Figure 55: Reliability growth projections with LRB highlighted
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Figure 56: Reliability growth projections with fly-back LRB highlighted
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An example from the initial data filtering that shows very little difference is the

core avionics and power redundancy. In this case, both the single and redundant

options spread across the entire range of reliabilities. This case is a prime example

of an option that may be dismissed for the time being because it seems to have little

effect on the overall vehicle reliability.

Figure 57 shows the selection of all vehicles with single core avionics and single

core power subsystems. The second plot, Figure 58, shows the selection of all the

vehicles with redundant avionics and redundant power systems. These figures show

only a very small difference at the very top and bottom of the reliability growth

curves. The first figure does not include the vehicles with the highest reliability,

while the second does not include the vehicles with the lowest reliability. Since each

of the selections show a wide spread in reliability value, this option can be considered

less vital to achieving high reliability.
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Figure 57: Reliability growth projections with no redundancy
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Figure 58: Reliability growth projections with full redundancy

Similar to the core avionics and power redundancy, the upper stage avionics and

power redundancy did not show a significant trend when using the simple filters.

In addition, the upper stage power type showed only a slight difference with all of

the highest reliability architectures containing a standard power system. The upper

stage number of engines did reveal a noticeable trend as the higher number of engines

tended towards the low end of the reliability range. This trend was shown previously

in Figure 52.

Through additional filtering, two of the core stage options were shown to have

a fairly large impact upon the vehicle reliability. The first option, core number of

engines, showed a narrow band of cases through the middle of the reliability range for

a four engine architecture. The five engine architectures actually spanned the entire

reliability range with cases at the very highest reliability and cases at the lowest. This

trend ultimately illustrates the importance of the second core stage option, engine-out

capability. Due to the fact that engine-out was only enabled for 5 engine core stages,
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the reliability of these stages depended heavily on the engine-out option. In the cases

where no engine-out was selected, the 5 engine architectures tended to be less reliable

than the 4 engine architectures. On the other hand, if engine-out was selected, the 5

engine core stage architectures were able to reach the highest reliability values.

Preliminary filtering of the reliability growth data can help to identify options

within the matrix of alternatives that may have the largest effect on vehicle reliability.

This filtering approach can also serve as a verification step prior to detailed data

analysis. Expected trends within the data can be checked in order to verify that the

analysis was completed correctly. If a counter intuitive trend is identified, the analyst

can focus attention on this trend and determine whether a batch of cases needs to be

re-run through the analysis.

5.3.2.2 Probability of Meeting a Specific Requirement

The previous section presented a very simple first step for exploring the output data

from the CONTRAST method. After initial exploration of the data, there are mul-

tiple more detailed analyses that will be very useful to the reliability analyst. The

first of these analyses is to determine the probability of a vehicle meeting a specific

reliability requirement. The results from this analysis will show which architectures

can meet the reliability requirement that has been laid out for the vehicle. In addition

it will allow the analyst to identify architectures that have the highest probability of

meeting or surpassing the requirement.

For the test problem results a reliability requirement will be assumed in order to

demonstrate the utility of this approach. A probability of failure of 1 in 100 flights

will be used as the reliability requirement. This number stems from the estimated

final probability of LOC for the Space Shuttle [78].

In order to identify the vehicles that reached the reliability requirement, the max-

imum values for all steps in time for all architectures were filtered. This filter resulted
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in the identification of 19,806 out of 20,160 architectures that reached a maximum

expected reliability of 0.99 or higher at some point during the flight history. These

architectures were then separated from the primary set of data for further analysis.

First, the expected reliability distributions of the architectures were examined

at the last equivalent flight. This analysis identifies the probability of reaching the

reliability requirement at maturity for each vehicle. Figure 59 shows a distribution

of the probability of meeting the reliability requirement at flight 250 for all 19,806

architectures. As seen in the figure, 75% of these architectures have less than a

5% probability of meeting the reliability constraint at the last flight. Within the

defined architecture space, the maximum probability of meeting the 0.99 reliability

requirement at the last equivalent flight is 64%.
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Figure 59: Probability of meeting a specific reliability requirement at maturity

To reduce the number of architectures being considered another constraint will be

applied that states that the vehicles must have at least a 25% probability of meeting

the reliability requirement at maturity. After enforcement, 387 architectures were

found that met this constraint. From these architectures, a few of the options from

the matrix of alternatives can be highlighted as important for achieving the reliability

requirement.
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First, the core engine options suggest that the core engine out option is key for

achieving high reliability. Every vehicle within the remaining architectures utilized a

5 engine core with engine out capability. It is interesting to note, however, that the

engine type did not seem to make a difference as there were nearly identical numbers

of RS-25 and RS-68 engines.

Another option that fell out after enforcing the 25% probability of achieving the

reliability requirement at maturity was the booster type. None of the 387 architectures

utilized a liquid booster, while a majority of the architectures used the STS derived

SRB. A quick test revealed that 90% of the liquid booster cases provided less than a

5% chance of meeting the 0.99 reliability requirement at maturity.

Figure 60 below shows a few of the example distributions from the 387 architec-

tures. The left most distribution illustrates that a majority of the vehicles that met

the 25% constraint utilized upper stages with only 2 engines. The middle distribu-

tion shows the split of vehicles using the STS derived SRB versus the advanced SRB.

Finally, the right most distribution shows the nearly even split between the RS-25

and RS-68 core stage engines.

2

3

4

5

2
3
4
5
Total

Level 
220
84
52
31

387

Count
0.56848
0.21705
0.13437
0.08010
1.00000

Prob

 N Missing 0
4  Levels

Frequencies

Adv. SRB

SRB

Adv. SRB
SRB
Total

Level 
113
274
387

Count
0.29199
0.70801
1.00000

Prob

 N Missing 0
2  Levels

Frequencies

RS-25

RS-68

RS-25
RS-68
Total

Level 
192
195
387

Count
0.49612
0.50388
1.00000

Prob

 N Missing 0
2  Levels

Frequencies

Figure 60: Example distributions for 387 vehicle architectures
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Next, let us consider a few specific vehicle architectures from the 387 that have

been filtered. These architectures will illustrate comparisons that can be made be-

tween specific vehicles. Table 22 lists three different vehicle architectures along with

their specific vehicle options. The three architectures in the table represent vehicles

with differing upper stage engines, upper stage power system types, solid boosters,

core stage engines, and redundancy options. Note that these vehicles were chosen be-

cause they represent different unique vehicle architectures, but they all show nearly

the same probability of meeting the reliability requirement at maturity. This was done

in order to illustrate an important comparison between the CONTRAST method and

the existing methods discussed in Section 2.3.

First the mature reliability distributions for each of these vehicles will be consid-

ered. This will give an estimate for the probability that each vehicle will meet the

defined reliability requirement of 0.99. Figure 61 below shows the three vehicle re-

verse cumulative distribution functions at the last flight. As can be seen in the figure

the CDFs for these vehicles are similar, with only slight deviation between 0.95 and

0.98. The assumed reliability requirement line is plotted in the figure, which shows

that all three of the vehicles have around a 30% chance of meeting or exceeding this

requirement. These exact probabilities are 29.81%, 31.96%, and 31.05% for vehicle 1,

2, and 3, respectively.
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Table 22: Three specific vehicle architectures for comparison

Option Vehicle 1 Vehicle 2 Vehicle 3

Architecture # 9 9790 18501

Upper stage engines 2 RL-10C1 2 RL-10C2 2 New Staged Comb.

Upper stage power Single Redundant Single

Upper stage avionics Single Redundant Single

Upper stage power type Battery Battery IVF

Booster type SRB Adv. SRB SRB

Core engines 5 RS-25 5 RS-68 5 RS-68

Core engine out Yes Yes Yes

Core power Redundant Single Redundant

Core avionics Single Redundant Single
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As mentioned above, these vehicles were selected because they reach nearly the

same probabilities of requirement achievement at maturity. This case can therefore

be compared back to the state-of-the-art reliability tool, FIRST, which was discussed

in Section 2.3. In Section 2.3 the limitations of the mature estimates from the FIRST

tool were discussed. One of the primary issues with mature estimates will be illus-

trated using the three vehicles in Table 22.

Figure 62 below shows the data for these vehicles in the form of box plots at flight

250. This alternative plot shows the mature reliability of the vehicles in the same

form as the FIRST tool. Using these mature reliability distributions offers very little

information to differentiate between the three concepts. As can be seen in the plot,

the variability of vehicle 1 seems to be slightly lower than the other two vehicles.

However, vehicle 1 has the lowest probability of reaching the reliability requirement.

The results in the mature reliability form used by FIRST would therefore suggest

that any of the vehicles would be a satisfactory selection.
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Next, the rest of the reliability growth results produced by the CONTRAST

method will be considered. These results will give additional information about each

concept that would not be available when using existing tools. To illustrate the addi-

tional results, the baseline 25% probability of meeting the reliability requirement will

be examined. In this example, let us assume that a vehicle has reached its “mature”

state when it has at least a 25% chance of having a reliability that is greater than

or equal to the defined requirement. For each of the vehicles the reliability growth

results can then be used to determine the number of flights that are required to ensure

this 25% probability of meeting the 0.99 requirement. Table 23 gives the number of

flights required for each vehicle to reach the desired probability.

Table 23: Flights to reach 25% probability of meeting the 0.99 requirement

Vehicle Number Flights to 25% Prob. of Success

1 205

2 190

3 165

Now that the reliability growth data has been taken into account the three vehicles

are easier to differentiate. As seen in the table the vehicles have fairly significant

differences in their number of flights required to reach the 25% probability of success

benchmark. The first vehicle has the longest required time at 205 flights, which is 40

flights higher than vehicle 3. Note that vehicle 1 may have been the most desirable

choice when only considering the mature reliability because of its lower variability.

However, if this vehicle had been chosen it would have required a much higher number

of equivalent flights to reach the desired reliability level. The reliability growth output

therefore suggests that vehicle 3 is the most desirable option because it will mature

at a much faster rate. The ability to identify the amount of time or equivalent flights
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required to reach the reliability requirement was one of the primary motivators for this

research. The three vehicles above are just one example of the additional capabilities

that the CONTRAST method provides beyond that of current state-of-the-art tools.

5.3.2.3 Required Flights to Meet a Specific Requirement

The previous section presented an example using the reliability growth output to

identify the number of flights required to reach a specific level of reliability. This

section will continue to look at the required number of flights but from a different

angle. The previous example was looking at the number of flights required to reach

maturity. The example presented below will look at the number of flights required

to reach a go/no-go type reliability requirement for a first operational flight. This

estimate will give the analyst an idea of the time required in development and testing

to deliver the vehicle to its first flight.

First, the reliability requirement for first flight needs to be defined. This require-

ment can be determined based upon the estimated reliabilities of historical vehicles

at their first operational flight. For the Saturn V launch vehicle only 2 unmanned

test flights were conducted prior to the first manned launch [61]. At the time of the

first manned launch the reliability of the vehicle was predicted to be as low as 0.75%,

meaning a probability of LOV of 1 in 4 flights [63].

The most recent U.S. manned launch vehicle, the STS, faired a little better than

the Saturn V in terms of predicted reliability at first flight. No unmanned test flights

were performed prior to the first manned flight. The reliability of the vehicle for this

flight was estimated to be approximately 90% [78]. This represents a probability of

LOV of 1 in 10 flights. For the example in this section, the desired reliability at first

flight will therefore be set at 0.9. Since this is a relatively low value it will be assumed

that a vehicle must have at least a 95% chance of meeting or exceeding the reliability

requirement in order to qualify for its first flight.
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The first view to look at in this case is the entire grouping of architectures similar

to Figure 48. As a preliminary exploration, the y-axis can be set with a minimum

of 0.9 and the architectures can be colored by specific options. This will give an

idea of which options tend to have an effect on the required number of equivalent

flights to meet the first operational flight requirement. Figure 63 below shows all of

the architectures colored by core engine out. Figure 64 shows all of the architectures

colored by booster type.

Figure 63 shows a very pronounced trend after coloring all the architectures by

core engine out. As was shown in the previous section, all of the highest reliability

architectures utilize core engine out capability. The lowest reliability vehicles with

engine out still tend to be in the middle of the pack in terms of reliability. The non-

engine out cases on the other hand tend to be much lower reliability. However, there

is some overlap between the two options where non-engine out vehicles will surpass

engine out vehicles in terms of reliability. This trend is very intuitive because engine

out capability is a primary method for increasing vehicle reliability.

The second plot, Figure 64 shows all of the architectures colored by booster type.

In this case another noticeable trend is revealed. The first booster type is the STS

based SRB, which due to its extensive flight history is expected to be high reliability.

The advanced booster cases fall in the upper middle section of the plot and share

some overlap with the STS derived booster. Both of the liquid boosters lie on the

bottom half of the architectures with some overlap with the solid boosters.

Since the liquid boosters tend to have lower reliability, they also require more

equivalent flights to reach the 0.9 reliability level. In the bottom left hand corner of

the plot all of the solid booster cases fall between 0 and 30 or 40 flights at the 0.9

level. The liquids on the other hand range between 20 and 110 equivalent flights. This

trend raises an interesting point regarding the development of new technologies. The

STS SRB is regarded as the highest reliability because of its flight history with the
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advanced booster following in close second. The liquid boosters however, represent

major development programs including new liquid rocket engines. Therefore, it is

expected that many more equivalent flights will be needed to meet the first flight

reliability requirement.
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The trends observed in the initial explorations can now be examined in more

detail. As mentioned above the core engine out and booster type options showed

the most prominent reliability trends. Therefore, a set of vehicles will be selected,

which will represent the different architecture options. The baseline vehicle will be

representative of the initial configuration of the SLS vehicle. Three other architectures

will be added to capture the addition of advanced solid boosters, standard liquid

boosters, and fly-back liquid boosters.

Each of these four vehicles will be analyzed with and without engine out capability.

In the interest of consistency, all vehicles will be assumed to have single avionics

and single power subsystems in the upper stage and core. The equivalent flight for

each vehicle will be recorded when the 95% probability of meeting the 0.9 reliability

requirement is met. Table 24 lists the defaulted options used for all configurations.

The engine out and booster type options can be seen in Table 25, which also displays

the results for all 8 configurations.

Table 24: Defaulted options for time to first flight study

Option Default Value

Upper Stage Engines 4 RL-10C1

Upper Stage Avionics Single

Upper Stage Power Single

Upper Stage Power Type Battery

LRB Engines 2 Gas Gen.

Core Engines 5 RS-25

Core Avionics Single

Core Power Single
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The required number of equivalent flights to reach the 95% requirement is tabu-

lated below for all 8 vehicle configurations. As seen in the table, the effects of core

engine out and booster type on time to first flight are very clear. The first four vehicle

cases have no engine out capability with each of the four booster options. The STS

SRB offers the lowest number of required equivalent flights at 131, which is over 70

flights fewer than the two liquid booster options. It is interesting to note that both

the liquid boosters have nearly identical results for the number of flights required.

This suggests that a selection between the two liquid boosters will have little effect

on the time required to reach the first operational flight.

The final four cases again utilize all of the booster options, but also include core

stage engine out. In this case there is a slightly smaller difference between the STS

SRB and the liquid boosters at 50 additional flights. These four cases show the large

effect that core engine out has on reliability. Comparing vehicle 1 to vehicle 5, we

see a difference of 83 flights to reach the first flight criterion. When considering the

liquid booster cases this difference increases to nearly 100 flights. These results show

that enabling a core engine out capability will help to drastically reduce the amount

of time required for the vehicle to reach the first flight reliability criterion.
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Table 25: Flights required to meet the 95% requirement for 8 vehicle configurations

Architecture Core Engine Out Booster Type Flights Required

Vehicle 1 No SRB 131

Vehicle 2 No Adv. SRB 139

Vehicle 3 No LRB 205

Vehicle 4 No Fly-back LRB 204

Vehicle 5 Yes SRB 58

Vehicle 6 Yes Adv. SRB 64

Vehicle 7 Yes LRB 109

Vehicle 8 Yes Fly-back LRB 108

The vehicle results shown above illustrate the importance of two of the matrix

options when considering the number of equivalent flights to reach the assumed first

flight requirement. However, it is still of interest to explore the effects of the param-

eters in Table 24, which were defaulted. In order to explore the effects of all of the

matrix options the full set of vehicle architectures was first filtered to include only

the vehicles that were able to meet the 95% criterion. This filter resulted in 17,848

out of 20,160 that had at least a 95% chance of being at least 90% reliable at some

point in their flight history. For each of these architectures the earliest flight at which

the criterion was met was recorded.

A quick look at the minimum number of flights required for the 17,848 archi-

tectures revealed that only 12% of the vehicles were able to meet the requirement

in fewer than 100 flights. In addition, approximately 10% of these vehicles met the

requirement at flight 225 or later. The mean number of required flights for this data

set was 161 equivalent flights.

Next, to explore the effects of all of the architecture options a simple neural

network fit was utilized. A neural network is a type of surrogate modeling technique,
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which utilizes a network of activation function driven nodes to connect input to

output. Using the architecture data, the node weighting values are optimized such

that the output of the network closely matches the actual output value from the data

table. In this case the input data consisted of the architecture options, while the

output was the required number of flights. The neural network fit ultimately allows

for the use of a profiler, which shows the effects of each architecture input on the

number of required flights to reach the requirement.

The first profiler in Figure 65 shows the upper stage options versus the predicted

number of flights to reach the 95% requirement. The five upper stage options can

be seen listed across the x-axis at the bottom of the figure. The current selections

for each option are listed in red. As seen in the profiler plots, the two redundancy

options are very flat and thus have little effect on the number of flights. The power

system type option also has little effect on the output.

The engine options on the other hand do show a noticeable trend. First, the

engine type option shows a slight dip towards the RL-10C1 and RL-10C2. This

shows that the RL-10 engine options may be more desirable when considering the first

flight requirement. Due to the fact that the J-2X and new staged combustion engine

represent new development programs, this observation is very intuitive. The upper

stage number of engines option shows the largest trend with the number of flights

increasing linearly with the number of engines. This observation is also intuitive as

reliability is generally expected to decrease with the addition of more components in

the system.
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Figure 65: Prediction profiler for upper stage options

The second prediction profiler shows the booster and core options from the matrix

of alternatives. The three booster options are seen at the far left of the profiler followed

by the five core options. This profiler first shows that the STS SRB performs best in

terms of number of flights to reach the requirement. The “None” options for liquid

engine type and LRB number of engines are both the lowest points in their associated

profiler plots. These points correspond to both the SRB options. The booster type

profiler shows the liquid boosters being nearly equal in terms of number of required

flights. The advanced solid falls slightly below the liquids and the STS SRB achieves

the lowest level.

The core options are all very flat besides the engine out profiler. As shown in

Table 25, the engine out selection seems to have the largest impact on the number of

required flights. The second profiler confirms the previous observation, showing a very

steep decline in number of flights when moving from “No” to “Yes” for the engine out

selection. The remaining core options show very little effect on the number of flights.

The core number of engines option shows a slight decrease between 5 and 4 engines,

however if engine out was switched to “Yes” this decrease would be negligible. Both

of the engine options for the core lie at the same level with a very slight advantage

to the RS-68 engine. The avionics redundancy shows a slight improvement with the

selection of “Redundant” but the power redundancy shows almost no effect.
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Figure 66: Prediction profiler for booster and core options

The examples above illustrate the importance of the various architecture options

when considering the required time to reach a first flight reliability requirement.

Consideration of the development for each of the vehicle components is therefore very

important to the eventual success of the vehicle. The selected architecture options will

ultimately affect the vehicle’s ability to meet or exceed the reliability requirements

that have been laid out for the program.

Due to the effects of technology development on reliability growth a block upgrade

type approach can be taken for launch vehicles. In this approach the heritage systems,

such as the STS SRB in the example, are used on early versions of the new vehicle

as the other technologies are being advanced. In this case a trade is made during the

early flights between performance and reliability. Using the heritage systems allows

the vehicle to progress more rapidly towards first flight. Then later on in the program

the vehicle is upgraded in order to increase its overall performance, hopefully at little

to no cost in terms of reliability. This block upgrade approach is very significant to

the SLS program and is of interest for further analysis. Due to the fact that the

CONTRAST method is well suited to look at block upgrades and their effects on

reliability, the next section will present analysis of the proposed SLS block upgrades.

5.3.2.4 Analysis of Block Upgrades

Development of the SLS launch vehicle is currently underway. The SLS will act

as NASA’s heavy lift launch vehicle, which will enable human exploration to the
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moon and beyond [124]. The development of the SLS will utilize a block upgrade

approach, which focuses on upgrades to the upper stage and boosters. The initial

configuration of the vehicle utilizes STS derived SRBs along with a Delta-IV based

cryogenic upper stage [124]. Proposed upgrades to the upper stage include a four

engine RL-10 configuration, or a higher thrust configuration with 2 J-2X engines

[32, 151]. Other potential upgrades to the SLS include advanced solid boosters and

advanced liquid boosters [10, 33]. An illustration of the proposed upgrades for the

program can be seen in Figure 67.

Figure 67: Notional diagram of SLS block upgrades [102]

The goal of this section will be to explore the various options for SLS block

upgrades and identify any significant effects on vehicle reliability growth. In addition

to exploring the different options for upper stages and boosters, the study will look

at the order in which the block upgrades are implemented. As shown in the previous

section, various architecture options will have large effects on the maturation rate of

the vehicle. Therefore, it is expected that the order of implementation of the SLS

upgrades will have an effect on the reliability growth of the vehicle. The study in this
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section will evaluate the order of the upgrades in order to determine the most desired

path for block upgrades in terms of vehicle reliability.

To begin the study the baseline vehicle and any upgrade options must be identified.

The baseline vehicle, as seen in Figure 67, utilizes STS derived SRBs and an interim

cryogenic upper stage that is based on the Delta-IV [124]. The core stage of the

baseline vehicle uses 4 RS-25 engines and for the purpose of this study will be assumed

to have no engine out capability. The avionics and power redundancy options for

core and upper stages will be set to redundant for all cases. Redundancy is assumed

because the vehicle will ultimately be human rated. Table 26 lists the matrix of

alternatives options that define the baseline SLS concept.

Two options will be assumed for the upper stage upgrades. The first will be a

4 RL-10 engine configuration, which will also be assumed to contain an IVF power

system. This configuration is based upon the proposed dual use upper stage [32].

The second option is a J-2X driven design, which will also be assumed to contain the

IVF power system. The options from the matrix of alternatives that describe these

stages can be seen in Table 27.

Finally, two options for booster upgrades will be included. The first is the ad-

vanced solid booster, which was discussed in Section 5.2.3. This SRB represents

an incremental improvement in performance above the STS based SRB. The second

booster option will be a liquid rocket booster, which will be assumed to have 2 gas

generator engines. The LRB configuration is based upon an F-1 derived liquid rocket

booster that is currently under consideration [34]. The options selected in the matrix

of alternatives for the two boosters can be seen in Table 28.
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Table 26: Matrix of alternatives options for baseline SLS configuration

Option Baseline

Upper Stage Engines 2 RL-10C1

Upper Stage Avionics Redundant

Upper Stage Power Redundant

Upper Stage Power Type Battery

Core Engines 4 RS-25

Core Avionics Redundant

Core Power Redundant

Booster Type SRB

Table 27: Upper stage block upgrade options for SLS

Option Upper Stage 1 Upper Stage 2

Upper Stage Engines 4 RL-10C2 2 J-2X

Upper Stage Avionics Redundant Redundant

Upper Stage Power Single Single

Upper Stage Power Type IVF IVF

Table 28: Booster block upgrade options for SLS

Option Booster 1 Booster 2

Booster Type Advanced SRB LRB

Booster Engine Type N/A Gas generator

Booster # Engines N/A 2
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After defining the upper stage and booster upgrade options the reliability growth

projections for each of the vehicles can be compared. These initial comparisons will

look at the growth projections for each option as if the “upgrade” was performed at

the first equivalent flight. This will give an idea of the expected growth rate for each

vehicle. In total, 9 vehicle configurations can be generated from the baseline, upper

stage, and booster options in the tables above.

First, the number of flights required to reach a 95% probability of meeting or

exceeding the 90% reliability requirement for first flight can be examined for each

vehicle. Table 29 lists the vehicles by upper stage and booster type and gives the

number of flights required to reach this requirement. Note that the data in the table

does not take into account the block upgrade strategy. It only shows the number of

required flights for each vehicle if that specific configuration was developed and tested

from the start of the program. As seen in the table the baseline vehicle architecture

performs much better when considering this requirement. However, this vehicle is

expected to be the least capable in terms of performance.

Table 29: Upper stage block upgrade options for SLS

Booster Type Upper Stage Type Flights Required

Baseline (SRB) Baseline (2 RL-10C1) 70

Baseline (SRB) 4 RL-10C2 136

Baseline (SRB) 2 J-2X 96

Adv. SRB Baseline (2 RL-10C1) 86

Adv. SRB 4 RL-10C2 152

Adv. SRB 2 J-2X 126

LRB Baseline (2 RL-10C1) 136

LRB 4 RL-10C2 200

LRB 2 J-2X 168
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In order to implement and test the block upgrade strategy using the CONTRAST

method, a few additional assumptions will be needed regarding the development

schedule of the vehicles. The first such assumption is in regard to the assumed

first flight of the baseline vehicle. As shown in the table above, the baseline vehi-

cle reaches the 95% probability of meeting or exceeding 90% reliability at equivalent

flight 70. This value will therefore be used as the assumed first full flight of the SLS

baseline vehicle. This means that 70 equivalent flights worth of testing is performed

on the vehicle subsystems prior to the first full scale test flight. The STS development

timeline, discussed in Section 3.11.1, showed between 20 and 100 equivalent flights

worth of testing for the vehicle subsystems. Seventy equivalent flights worth of testing

therefore represents a very conservative approach in which the subsystems are tested

very extensively prior to first flight.

Next, assumptions regarding the development timeline are required. These as-

sumptions will address the starting point of the development for each of the block

upgrade options as well as the planned points of upgrade for the vehicle. For the

development start dates, multiple different strategies can be identified.

The most desired strategy would obviously be the concurrent development of all

the systems. In this strategy all of the upper stage options and booster options

would begin development at equivalent flight 0 along with the baseline vehicle. Un-

fortunately, this approach is the least realistic because budgetary constraints will not

allow for all vehicles to be developed concurrently.

A more realistic approach for development of the upper stage and booster options

would be to stagger the start dates of the unique development programs. In this case,

one of the upgrade options would begin development at some time after the baseline

vehicle. After some number of equivalent flights the next upgrade option would begin

development. The points at which the upgrades occur could then be determined in

two different ways.
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First, the block upgrades can be set based upon a specific equivalent flight number.

Since the first flight of the baseline vehicle is set at equivalent flight 70, the first block

upgrade would be assumed to occur after an additional number of flights. The second

upgrade would then occur at a set number of flights after the first upgrade.

The next option for the upgrade timing is based upon the achieved reliability of

the upgrade options. In this case the reliability of each option would be observed

at each step in time after the first baseline flight. When one of the options reached

a specified threshold, an upgrade would be performed. The second upgrade would

occur when the other option reached the reliability threshold.

The SLS block upgrade study will implement both of these approaches so they can

be compared side by side. It is expected that an interesting trade will be identified

between the expected vehicle reliability and the number of flights required to reach the

final upgraded vehicle. In the cases where the set upgrade schedule is used, the vehicle

reliability at each upgrade may be lower than the other option. However, the upgrades

will likely be performed much earlier than if a reliability threshold is implemented for

the upgrade options. Thus the vehicle will achieve its highest performance capability

earlier in the flight history.

From the discussion of the schedule the following assumptions were derived for the

SLS block upgrade study. First, two block upgrade approaches will be used. One will

assume a set number of flights in between upgrades, with the first upgrade occurring

10 equivalent flights after the first baseline test flight. The second upgrade will then

be assumed to occur 20 equivalent flights after the first upgrade.

The other option will implement a reliability threshold to determine the point at

which each upgrade occurs. This threshold will be based upon the requirement setup

in the previous section. Each upper stage and booster option will be considered

eligible for upgrade when they achieve a probability of at least 95% of meeting or

exceeding a reliability of 0.99. This means that a new upper stage or booster will
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not be placed on the operational vehicle until there is at least 95% confidence that

its individual probability of LOV is 1 in 100 flights.

Next, the development timeline of the upgrade options will be staggered. Bud-

getary constraints make it very unlikely that the baseline, advanced upper stage, and

advanced booster would all be developed concurrently. Therefore, a staggered ap-

proach is assumed for this study. Since the first flight is set at equivalent flight 70,

the time between the start of individual developments will be set at 25. This means

the baseline vehicle will start development at flight 0, one of the upgrade options will

start at 25, and the last upgrade option will begin development at flight 50. The

25 flights assumption was derived from the notional timeline in Table 18 in Section

3.11.1.

This table shows differences between the assumed first flights of multiple vehicle

subsystems that were derived from the STS development timeline. The first flight

differences in the table range between 10-80 flights, with an average around 35 flights

between components. Since the SLS first flight was assumed at 70, this average was

adjusted downward to 25 in order to accommodate the start of development of both

upgrade options prior to the first baseline flight.

Using the assumptions derived above a run matrix can be generated, which iden-

tifies the development and upgrade strategy combinations. Note that two options

exist for both the upper stage and booster upgrades. All combinations of the upper

stage and booster options will be used with each case in the run matrix, resulting in

24 unique scenarios. Table 30 below lists the various run cases for the block upgrade

study.
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Table 30: Run matrix for SLS block upgrade study

Development Order Upgrade Strategy First Upgrade

Upper Stage, Booster Fixed Upper Stage

Upper Stage, Booster Fixed Booster

Booster, Upper Stage Fixed Upper Stage

Booster, Upper Stage Fixed Booster

Upper Stage, Booster Threshold Variable

Booster, Upper Stage Threshold Variable

In order to compare the various run scenarios, multiple different outputs will

be tracked. The primary outputs to track will be the flight number and reliability

distribution for the full vehicle at each block upgrade. The first four cases in the run

matrix will have identical flight numbers for the upgrades, however, their reliability

distributions will vary depending upon the system being upgraded. The final two

cases will have variable flight numbers at each upgrade.

The distributions at each upgrade will ultimately help to determine the best strat-

egy for upgrading the vehicle in terms of reliability. At each upgrade a very minimal

decrease in the vehicle reliability is desired, with an increase in vehicle reliability be-

ing a major plus. The goal for the vehicle is to reach its final state in the smallest

number of flights and at the greatest reliability. Therefore, the reliability distribution

at the second block upgrade will be of particular interest because it represents the

most evolved and capable version of the vehicle.

In addition to looking at the distributions at each upgrade, the mature reliability

distributions for each case can be examined. The mature distributions help to iden-

tify the vehicles that will achieve the highest reliability. For this study the mature

reliability distributions for each vehicle will be used to test the probability of meeting

a reliability requirement of 1 in 100 flights, which was the estimated probability of
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LOV for the STS at the end of its operational life.

To begin the discussion of the results, the fixed upgrade strategy will be analyzed

first. Recall that this strategy used a set flight number for both of the block upgrades.

The order of the development and eventual upgrade of the boosters and the upper

stage were varied, which is shown in the run matrix in Table 30. The beginning point

of the development of these systems was set to either 25 or 50 flights. Note that the

number of repetitions performed at each step in time was set to 1000 in order to keep

the runtime at a reasonable level. These repetitions were run at a total of 375 steps

in time for each of the vehicles within the run matrix. The data therefore represents

a total of 3 million individual repetitions.

First, the reliability growth curves for the fixed upgrade strategy can be examined.

Figure 68 shows the mean reliability of all of the vehicles versus equivalent flight

number. In the figure the upper stage upgrade types have been colored red and

blue, while the booster upgrade types are marked using circles and pluses. The

leftmost line of points between flights 0 and 80 represents the reliability growth of

the baseline configuration. At flight 80 the first upgrade occurs, which generates four

small groupings of points. A few of these groupings can be seen at the end of the

arrows marked A and B. After flight 100 the second upgrade occurs, from which the

reliability growth of the final vehicle configuration proceeds. This figure shows a few

interesting trends associated with the various booster and upper stage options.

First, the booster type in the fixed upgrade strategy seems to have a large effect

on the mature reliability of the vehicle. The two lines at the bottom of the plot

between flight 100 and 400 (right arrow labeled C) represent all of the liquid rocket

booster cases. The other two lines above (left arrow labeled C) show the advanced

booster cases, which reach a higher reliability at maturity. The difference between

these reliability values is on the order of 1 in 250 flights.

It is also interesting to note that the order of development has a significant impact
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on the mature reliability when the advanced SRB is used, but does not have much

effect when an LRB is used. This is shown by the arrows labeled C. The left arrow

points to two growth tracks for the RL-10 upper stage with an advanced booster. As

seen in the figure, there is a noticeable split between these tracks during the middle

range of the flight history. The uppermost track represents the case where the upper

stage begins development prior to the booster, while the lower track represents the

opposite. In looking at the right arrow labeled C, both of these tracks lie on top of

one another, showing no preference for the development order. This result suggests

that in the fixed upgrade strategy, the vehicle reliability will be much more sensitive

to the development order if an advanced SRB is used. In the case of the LRB the

development order does not make a large difference in the mature reliability. However,

it does show a difference when considering the first upgrade.

Two arrows labeled A can be seen pointing to two of the J-2X growth tracks

between flight 80 and 100. These tracks represent the case where a single upgrade

has occurred. The top-most arrow shows a grouping of points that are cases in which

the booster was developed and upgraded first. Note that this grouping contains both

circles and pluses, which means that both booster types lay within this group. The

lower group of points denoted by A shows the case where the upper stage began

development prior to the booster.

The growth tracks labeled B show a similar trend. The top-most track within

this grouping represents the case where the upper stage development began first and

the upper stage was upgraded first. The lower track therefore represents the case

where the booster was developed first but the upper stage was upgraded first. These

groupings show a rather intuitive result, which shows that the option that is planned

to be upgraded first should also begin development first in order to reduce the effects

of the upgrade on the overall vehicle reliability.
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Figure 68: Reliability growth for a fixed block upgrade schedule

Next, the flexible upgrade strategy can be considered in order to identify any

differences from the fixed approach. The first flexible approach used a comparison

between the mean vehicle reliability and the booster and upper stage upgrade options

in order to determine when an upgrade would take place. In this case, the mean of

each of the upgrade options was tracked. When the mean of one or both of the

upgrade options became greater than or equal to that of the current full vehicle, an

upgrade was said to take place.

In this approach the booster upgrade occurred first in every single case, including

cases where the booster development was started after upper stage development.

The upper stage upgrade was performed simultaneously in all but two cases using

this approach. In these two cases the upper stage upgrade was performed at flight

82 and flight 84. Since the upgrades both occurred on or very near flight 80, the

results for this strategy show nearly identical trends as the fixed upgrade strategy.

The second flexible upgrade strategy therefore presents more interesting results.

272



www.manaraa.com

The second flexible strategy used a different criterion for determination of upgrade

eligibility. In this approach a probability of reaching a specific reliability level was

used to determine if the upper stage or booster was ready for upgrade. As discussed

above, the initial criterion was a 95% probability of meeting or exceeding a reliability

of 0.99 for the individual upper stage or booster. To check this criterion the relia-

bility distribution for each upgrade option at each step in time was sampled. If the

percentage of samples exceeding a reliability of 0.99 was greater than or equal to 95%,

the associated upper stage or booster was deemed fit for upgrade.

Upon initial run of the 95% criterion it very quickly became clear that this setting

was over constraining the block upgrades. Using the 95% setting resulted in almost

zero total upgrades, with only the advanced boosters being upgraded at the very end

of the flight history. Therefore, the 95% criterion was relaxed until both the booster

and upper stage upgrades occurred at some point in the flight history for every case.

The resulting criterion was a 50% probability of meeting or exceeding the reliability

requirement of 0.99 for the individual upper stage or booster.

The initial results for the second flexible upgrade strategy can be seen in Figure

69, which plots the mean reliability of each vehicle versus equivalent flight number.

This plot quickly shows a very different reliability growth outcome for the vehicles

when using the new strategy. A vertical line was added to the figure to show the

assumed first flight of the baseline architecture. After this reference line each of the

upgrade options were eligible to be upgraded if the reliability criterion was met. The

arrows labeled A show small splits between a few of the growth tracks that are very

similar to the fixed upgrade output. These splits show the effects of development order

on the overall vehicle reliability. The three arrows labeled B highlight a few of the

discrete jumps in reliability caused by the block upgrades. Since a variable strategy

was applied these upgrades occurred at different points throughout the flight history.

The reliability growth tracks for the different vehicle options after the first upgrade
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are not as tightly grouped as the fixed strategy. At the center of the figure a very

long track exists, starting from the top arrow labeled A at flight 80 to flight 450,

which reaches the highest vehicle reliability requirement. In this case an advanced

SRB booster upgrade was implemented very early in the flight history. Since the

upper stage upgrade did not occur until flight 450, the vehicle achieved significant

reliability growth prior to this flight. After the upper stage upgrade a significant drop

in reliability occurred and both the cases following this growth track ended at nearly

the same mature reliability. It is interesting to note that both these cases utilize the

RL-10C2 upper stage, which explains why the initial booster upgrade reaches such a

high reliability. The RL-10C2 upper stage requires more equivalent flights to reach a

mature state, which is ultimately why the advanced booster vehicle progressed so far

prior to upper stage upgrade.
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Figure 69: Reliability growth for a flexible block upgrade schedule
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Another interesting view of the flexible upgrade strategy data can be created by

highlighting the reliability growth tracks based upon the vehicle type. This will show

the effects of the various upgrade options on the overall reliability growth track of the

vehicle. Figure 70 and Figure 71 show two pairs of cases highlighted. In Figure 70

the pair of selected vehicles includes the advanced solid booster and RL-10C2 upper

stage upgrades. Figure 71 shows the advanced solid booster and J-2X upper stage

upgrades.

The first major difference to note between the two sets of cases is the point at

which the upper stages are upgraded. The RL-10C2 stage requires more time to reach

the upgrade criterion, which results in the very long history of the booster upgraded

vehicle. In the case of the J-2X stage, there is little to no flight history for the middle

vehicle block.

Since the RL-10C2 stage requires more equivalent flights to reach the upgrade

requirement, the upper stage upgrade occurs at flight 426 and 452, which is labeled

B in Figure 70. This slight difference in flights is caused by the first development

setting for the upgrade scenario. The flight number at upper stage upgrade was lower

in the cases where upper stage development began prior to booster development.

It is interesting to note that the booster upgrade occurred at flight 80 for both of

these cases. This shows that the equivalent flight at booster upgrade was independent

of when the booster development began. Thus for the advanced booster and RL-10C2

vehicle it would be advisable to begin development of the upper stage first in order

to achieve the final vehicle upgrade at an earlier equivalent flight.
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Figure 70: Advanced solid booster and RL-10C2 upper stage vehicles
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Figure 71: Advanced solid booster and J-2X upper stage vehicles
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A similar effect can be seen in the J-2X cases in Figure 71. For this vehicle upgrade

case the J-2X upper stage upgrade occurred at flight 80 and 102. The earlier upgrade

again occurred when the upper stage development was assumed to start first. As with

the RL-10C2 upper stage case, the advanced booster was upgraded at flight 80 for

both of the J-2X cases. Therefore, when the J-2X development was assumed to begin

prior to the booster development, both upgrades were ready for implementation at

the same equivalent flight. Again, this case shows that it may be beneficial to begin

upper stage development first in order to reach the fully upgraded vehicle in the least

number of equivalent flights. However, the case in which both upgrades occurred

simultaneously shows the largest reduction in vehicle reliability from the baseline

configuration. If reliability is the only consideration the group of points labeled A in

Figure 71 is much more desirable. These points represent the case where the booster

was developed and upgraded first.

Another difference between the two plots in Figure 70 and Figure 71 is seen in the

mean reliability of the vehicle across the entire flight history. From equivalent flight 0

to flight 80 these values are the same because the baseline vehicle is in use. However,

from flight 80 to the end of the flight history the vehicles have much different mean

reliabilities. Except for the points labeled A in Figure 71, the advanced booster and

RL-10C2 case shows a much higher reliability between flight 80 and 426.

From a pure reliability standpoint this vehicle is much more desirable because it

maintains a higher reliability for over half of the flight history. However, the lower

expected reliability from the J-2X case is due to the fact that both upgrades have

occurred by flight 102. This highlights a major trade between performance and ex-

pected reliability. The fully upgraded vehicle will obviously provide more performance

between flights 102 and 426, but it also has noticeably lower mean reliability value.

Using the same purely reliability standpoint the most desirable vehicle is different

when considering flights above 452. Past this equivalent flight the RL-10C2 upper
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stage upgrades have occurred, which causes a drop in expected reliability of the overall

vehicle. This drop causes the RL-10C2 vehicle to lie below the J-2X vehicle for the

remainder of the flight history. In this case, the J-2X vehicle is more desirable in

terms of pure reliability. That may also be the case when considering performance,

since the J-2X is a higher thrust engine and may be able to push a higher payload

mass.

Next, the reliability growth tracks for the liquid rocket booster cases can be con-

sidered. Figure 72 and Figure 73 below give two additional highlighted vehicle cases.

Figure 72 shows the LRB and RL-10C2 vehicles, while 73 shows the other upgrade

combination with the LRB and J-2X upper stage.
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Figure 72: Liquid rocket booster and RL-10C2 upper stage vehicles
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Figure 73: Liquid rocket booster and J-2X upper stage vehicles

For the LRB set of vehicles a difference can now be seen in the flight number at

which the first upgrade occurs. The previous case with the advanced solid boosters

showed a first upgrade at equivalent flight 80 for every combination of development

order and upper stage type. The LRB cases, however, show a different first upgrade

point depending upon the upper stage option. In Figure 72 the first upgrade occurs

at flight 212 or 238 depending upon the development order of the booster and upper

stage. Both of the first upgrades for the RL-10C2 upper stage case are the liquid

booster.

The J-2X upper stage cases are much different in terms of the first upgrade. For

these vehicle cases the first upgrade occurs at flight 80 or 102 depending upon the

development order. Both of the first upgrades for this vehicle are the upper stage.

Since the J-2X stage reaches the upgrade criterion more quickly, this vehicle also

reaches the full upgraded status in fewer equivalent flights. The full upgraded status
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is reached at flight 212 or 238 versus flight 426 or 452 for the RL-10C2 vehicles.

It is interesting to note that the development order effects are seen at different

points in the flight history for the RL-10 and J-2X upper stage options. In both

figures split growth tracks caused by the development order are labeled A. The split

shown in Figure 73 is very intuitive. Since the upper stage upgrade occurs first, the

top track represents the case where the upper stage was developed first. The only

difference between cases after the booster upgrade is the point at which the second

upgrade occurred.

The split caused by the development order occurs after the second upgrade in

RL-10C2 upper stage cases. This split is labeled A in Figure 72. The lower track

corresponds to the case in which the upper stage development begins later than the

liquid booster. The upper track therefore corresponds to the case where the upper

stage is the first to be developed. These two cases show a noticeable split due to the

differences in the growth rates between the liquid booster and the RL-10C2 upper

stage.

Since the lower track corresponds to the case where the booster was developed

first, the booster reliability for this track is expected to be slightly higher than the

upper track. However, in the lower track the upper stage was developed later and

will have a lower reliability than in the upper track. What this illustrates is that

the reduction in reliability of the upper stage is much greater than the increase in

reliability of the booster due to development order. At the later portions of the flight

history, the liquid booster has reached a mature state, where the reliability is nearly

constant. Due to this, the changes in development time will not have a large effect on

the booster reliability. On the other hand, the upper stage is still experiencing some

noticeable reliability growth during the later equivalent flights. This means that the

extra 25 flights worth of development time will have a significant impact on the stage

reliability. Therefore, this split is another illustration of the importance of the order
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of development for the liquid booster and RL-10C2 upgrade options.

The final analysis that can be performed for the flexible block upgrade data is to

consider the reliability growth tracks versus a performance metric. This will allow for

the identification of obvious trades that exist between the overall vehicle performance

and reliability. It will also illustrate how the CONTRAST method can be integrated

with other vehicle analyses in order to make more informed design decisions during

early conceptual design.

In order to observe the relationships between reliability and performance for the

block upgrade problem a notional payload capability metric was introduced. Devel-

opment of a full scale modeling and simulation environment that can handle many

unique vehicle concepts was considered to be outside the scope of this research. There-

fore, the payload capability metric was setup using representative levels of perfor-

mance, which were based upon the different upgrade blocks of the vehicle.

Figure 67 shows a notional block upgrade scheme for the SLS, which first imple-

ments an advanced booster upgrade followed by an upper stage upgrade. At each

upgrade the payload capability, listed above each vehicle, is incrementally increased.

This trend was used to set up the payload metric that was used herein.

First, the baseline vehicle was assumed to have the lowest payload capability. An

upgrade to the baseline upper stage or booster would increase the payload capability

to the next level. Based upon the upgrades shown in Figure 67 it was assumed that

a booster upgrade would increase the baseline vehicle performance more than an

upper stage upgrade. Thus the second performance level corresponds to vehicles with

baseline boosters and upgraded upper stages. The third level therefore represents a

vehicle with a baseline upper stage and upgraded boosters.

Two additional levels were added to account for the second upgrade of the vehicle.

It was assumed that the liquid rocket boosters would provide the best performance

in terms of payload capability. Therefore, the highest payload capability level was

281



www.manaraa.com

assigned to vehicles with an upgraded upper stage and liquid rocket boosters. The

fourth level was then assigned to the vehicles with advanced solid boosters and up-

graded upper stage. A notional 1 to 5 scale was used for illustration purposes, with

5 corresponding to the best payload performance. This scale is representative of a

range of payloads such as the 70 ton to 130 ton range seen in Figure 67.

After applying the payload capability metric, the reliability growth data was col-

ored according to the notional scale. Figure 74 below shows the reliability growth

tracks colored on a scale from blue to red, with red corresponding to the highest

payload capability. Multiple observations regarding trades between reliability and

performance can be drawn from this figure.
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Figure 74: Reliability growth for a flexible block upgrade schedule

First, the effects of the order of upgrade on reliability and performance are appar-

ent in the figure. Consider the cases in light blue between flight 80 and 250 starting

from the arrow labeled A. These cases represent vehicles in which the upper stage

was upgraded before the booster. In terms of reliability these cases are dominated by
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the baseline vehicle line of cases in blue, labeled B, as well as the gray line of cases

representing a booster upgrade, labeled C. The cases are also dominated in terms

of performance as the red line below, labeled D, represents a fully upgraded vehicle.

This shows that if the upper stage upgrade occurs first, the vehicle will incur a larger

decrease in reliability for a smaller increase in performance than if the booster were

upgraded.

However, the early upper stage upgrade does allow the vehicle to reach its highest

level of payload capability earlier on in the flight history. The gray line of cases

between flight 80 and 450, labeled C, shows a better performance and reliability for

a vehicle on which the booster was upgraded first. Unfortunately for this vehicle, the

second upgrade occurs very late in the flight history around flight 450. In contrast,

the light blue cases labeled A, where the upper stage was upgraded first, reach the

second upgrade point between flight 200 and 250. There are also cases in which the

booster and upper stage were upgraded simultaneously, causing a jump in capability

from 1 to 4 around flight 80.

This data ultimately shows a trade-off that depends upon the difference in capa-

bility between the upper stage upgraded vehicle and the booster upgraded vehicle.

If a significant payload capability increase can be achieved with a booster upgrade,

then the difference in time required to reach the final maximum payload capability

may be acceptable. However, if this difference is negligible the upper stage upgrade

first approach looks more appealing. This is due to the fact that the vehicles that

upgraded the upper stage first reached the maximum payload capability in a much

smaller number of equivalent flights.

A similar trade-off can also be seen when considering the two booster options.

Since the liquid booster was assumed to provide more performance, the level 5 points

in red all contain liquid boosters and upgraded upper stages. The flights at which

performance level 5 is reached are labeled E. The final vehicle configurations using
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advanced solids were set to level 4, which is labeled D and shown in light red. As

seen in the figure the liquid rocket booster vehicles lie beneath the advanced solid

cases in terms of reliability. The liquid vehicles also are at a disadvantage in terms

of time to reach the final payload capability. At the bottom of the figure the lighter

red points begin at flight 80, while the red points don’t show up until around flight

210. In this case it is again important to consider the differences between the booster

capabilities. If the liquid booster provides a significant advantage in terms of perfor-

mance, the added number of required equivalent flights may be acceptable. However,

if the performance difference is small or the schedule and budget are prohibitive the

advanced solid booster is the more desirable option.

The consideration of the trade-off between reliability and time required to reach

the final configuration is heavily dependent upon the total lifespan of the vehicle.

Obviously 200 operational launches is a very large and unrealistic expectation for

a single launch vehicle. However, the equivalent flights take into account any test-

ing that occurs in between operational flights. For example, subsystems such as the

SSME and SRB on the STS underwent test firing between every operational flight.

The desired upgrade option is therefore dependent upon the assumed schedule and

approach for testing between flights. If a rigorous post flight analysis and test ap-

proach is implemented, the vehicle may reach equivalent flight 200 very rapidly. In

this case, the LRB’s lower reliability between flight 100 and 200 is less of an issue

because the final vehicle configuration will be reached very rapidly. On the other

hand, if testing between flights is prohibited by an aggressive launch schedule or bud-

get, reaching equivalent flight 200 will take much longer if it is reached at all. This

case makes the cases labeled D more attractive because they reach the final vehicle

configuration at a much earlier point in the flight history.
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5.3.2.5 Conclusions

The three sections above illustrated multiple different uses for the output from the

conceptual reliability growth method. Section 5.3.2.1 covered some basic data explo-

ration techniques for initial analysis of the reliability growth output. This section

illustrated a few techniques to rapidly identify the expected effects of the architecture

options. By using simple filtering the architecture options that seem to have the

largest effects on reliability can be quickly identified.

The next section, Section 5.3.2.2, went into further detailed analysis of the re-

liability growth results. In this section the probabilities of meeting or exceeding a

reliability requirement were derived for each vehicle within the architecture space. An

example was also given, which compared the output from the CONTRAST method to

the output of one of the state-of-the-art tools discussed in Section 2.3. This example

illustrated the ability of the method to improve upon one of the specific weaknesses

that was called out for the existing tool.

Section 5.3.2.3 then presented an alternative approach to what was seen in Section

5.3.2.2. In this section the number of flights required to reach a threshold for the first

operational flight was explored. Eight example vehicles were used to illustrate the

effects of various architecture options on the time required to reach the first flight

threshold. In addition, prediction profilers were introduced as an alternative method

for identifying the effects of each parameter. These profilers give the analyst a rapid

and intuitive visualization of the architecture effects.

The final results section, Section 5.3.2.4, presented a more complex application

of the CONTRAST method. This section addressed the proposed block upgrades to

the SLS vehicle and looked at the effects of the various upgrade options on vehicle

reliability and time required to reach the final vehicle configuration. The upper stage

and booster upgrade options for this section were setup based upon proposed upgrades

to the SLS baseline vehicle. Multiple upgrade strategies were also implemented.
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The results of the block upgrade study ultimately conveyed the importance of the

development order in terms of vehicle reliability. The results showed that the upper

stage development should be started prior to the booster development especially when

using the advanced solid booster.

The upgrade order was also shown to have an impact on the equivalent flights re-

quired to reach the final vehicle configuration. In general, the vehicles which upgraded

the upper stages first also reached the final configuration first. The time required to

reach this final configuration is very important when considering the payload capa-

bility of the upgraded vehicles. It also has very major implications when considering

the available budget and schedule. A large number of required equivalent flights will

obviously require many expensive tests as well as time to perform said tests.

Within the final results section a notional payload capability metric was also added

to the results in order to illustrate trades between reliability and performance. Al-

though full performance analysis was not implemented for all of the vehicles, Figure

74 was used to show how such results could be used to further supplement the output

of the CONTRAST method. The joint consideration of performance and reliability

with a single set of results was one of the primary motivating factors for the initi-

ation of this research. Utilizing the method derived in this dissertation along with

established vehicle performance analysis tools will allow for more informed decision

making during early conceptual design. Ultimately this will translate into more effec-

tive concept down selection, which will result in baseline concepts that find a balance

between maximum performance and maximum reliability.
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CHAPTER VI

CONCLUDING REMARKS

6.1 Summary of Findings

The primary goal of this thesis was to develop a method for assessment of launch

vehicle reliability and safety during conceptual design. It was shown in Section 1.1

that vehicle architecture options have a great effect on the eventual reliability of

the system during operations. However, during the early phases of the design cycle,

vehicle options are down-selected and the baseline architecture is essentially locked-

in. Therefore, it is essential that the architecture effects on reliability and safety be

captured prior to the selection of a baseline vehicle. This observation lead to the

derivation of the research objective for the thesis, which is restated below.

Research Objective

To formulate and implement a method that will quantitatively

capture launch vehicle architecture effects on reliability and safety, in

order to facilitate more informed decision making during early

conceptual design.

In order to meet the research objective multiple research questions were derived in

Chapter 3. These questions ultimately guided the research and helped to determine

the appropriate steps for the final method. The first research question, posed in

Section 3.2, addressed the desired form of the final output. This question acted

as the starting point for development of the method, working backwards from the
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desired output. The desired output format was identified using derived requirements

for research objective completion. In reality only a few options for the output format

exist, which made estimates as a function of time a logical choice. This choice was

reflected in the statement of an assertion to research question 1.

Assertion to Research Question 1

Reliability estimates as a function of time are the most desirable for

comparison of launch vehicle concepts during early design because

they provide more information than point or probabilistic estimates.

Following the selection of estimates as a function of time as the desired output for

the method, Section 3.3 continued on to the second research question. Prior to this

research question reliability growth methods were identified as a natural selection for

generating the method output. In Section 3.3 the options for potential growth models

were reduced to consider only discrete formulations, which are more appropriate for

assessment of launch vehicles. Therefore, research question 2 was posed in order to

identify the most appropriate discrete reliability growth model for application during

conceptual design.

Section 3.4 carried out experimentation in order to select a growth model for

application in the CONTRAST method. In this section, the model options were

further reduced after discussion of the data availability during early conceptual design.

Models such as the Fries and Finkelstein models were eliminated because they required

data that is not likely to be available early in the design cycle. Ultimately Experiment

1 illustrated that the Hall model captured the reliability growth behavior of previous

vehicles much better than the Morse model. The results of this experiment therefore

substantiated hypothesis 2.
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Hypothesis 2

If the Hall growth model is applied, the output reliability estimates

will have greater accuracy while utilizing more traceable assumptions

than the AMSAA-Crow, Finkelstein, Fries, or Morse growth models.

The next step in the development of the method stemmed from a weakness in the

application of the reliability growth models. It was noted that if these models are

applied at the system level, various architecture effects cannot be captured. Thus,

trying to compare vehicles that are nearly identical but only introduce changes to

subsystem redundancy or engine-out is futile if the growth model is applied at the

system level. Research question 3 was posed in order to address this issue and identify

the appropriate level of application of the growth models.

In Section 3.5 various levels of system characterization were discussed and com-

pared to the flow through the design process. It was observed that details regarding

each level of characterization are essentially unlocked as the design progresses. This

means that during early design, only information regarding the top most levels is

available. However, it was noted that the growth model accuracy was expected to

increase as the level of characterization became more detailed. Therefore the desired

level of characterization for model application was identified as the lowest level at

which data was available. At this point another observation was made, which further

reduced the options for the level of application of the growth models.

The assumptions for the selected Hall growth model were discussed in Section

3.3.1.5. Within the derivation of the model the failure modes are assumed to occur

independently of one another. In other words, the failure modes included in the model

cannot cause the initiation of another failure mode within the model. The easiest

way to avoid this issue is to only define the catastrophic failure modes. However,
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at the more detailed levels of characterization it is much more difficult to identify

independent modes. At levels such as the assembly or sub-assembly, multiple strings

of failures need to take place in order to cause an LOM or LOV event. Therefore,

the options for model application were limited to the system and subsystem level in

order to avoid an issue with failure mode independence.

The level of application of the Hall model was then addressed by research question

3. During the discussion of research question 3 it was shown that the lowest levels of

application were inappropriate for use during conceptual design. This was primarily

due to the amount of information required to produce the model assumptions. The

highest level of application was also ruled out. Applying the model at the system level

would not allow for the capture of some primary architecture options for improving

reliability such as redundancy or engine-out capability. An assertion to research

question 3 was stated, which selected the subsystem level as the most advantageous

during conceptual design.

Assertion to Research Question 3

Applying the reliability growth models at the subsystem level will

provide an adequate level of detail to capture relevant architecture

trades while avoiding issues with data availability.

After identifying the subsystem level as the most appropriate for application of the

reliability growth model a new research question was posed. This question addresses

the need for an additional step within the CONTRAST method to take the subsystem

level reliability growth outputs and generate an overall vehicle growth curve. There-

fore, research question 4 asked what technique is most appropriate for generating the

vehicle level reliability growth curve using the subsystem level growth models.

In Section 3.6 five options were identified as possible solutions. Through the
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discussion in this section multiple options were eliminated from consideration, leaving

only two for testing in Experiment 3. The two remaining options, FTA and RBD,

were expected to perform exactly the same for any given launch vehicle architectures.

The results of the experiment eventually substantiated this expectation, showing no

difference between the two options. Therefore, the choice between the remaining

options was determined to be a matter of preference. A simple fault tree was then

identified as the approach for combining the subsystem level growth curves. Fault

trees were chosen because they are failure oriented, which aligns well with the failure

mode based assumptions of the growth model.

Two additional research questions were posed in order to work out details regard-

ing the CONTRAST method. The first of these questions examined the options for

generating the reliability growth assumptions. Through the discussion of this question

in Section 3.9 multiple potential avenues were identified for assumption generation. It

was determined that the assumption sources would vary depending upon the amount

and quality of the available data for each subsystem. Both a simple parts count ap-

proach and a detailed approach based upon FMEA were discussed. These approaches

were eventually demonstrated in the STS example problem in Section 4.2.

Within the example problem an important observation was drawn regarding the

approaches for generating the growth model assumptions. Although the parts count

approach is very rudimentary, it was successfully applied during the example problem

for multiple subsystems. The SSME subsystem within the example problem benefited

from the availability of detailed FMEA data, which gave accurate estimates of number

of failure modes and probability of occurrence. For this subsystem a simple parts

count approach was taken first and then compared to the detailed SSME FMEA

data. The resulting comparison showed agreement between the parts count derived

assumptions and the detailed FMEA. This effectively showed the validity of the parts

count approach in the absence of detailed data. The final reliability growth projections
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that were generated using these assumptions also showed very satisfactory agreement

with the actual STS data. The results ultimately supported the assertion that was

developed in response to research question 5.

Assertion to Research Question 5

• If detailed data from a previous, similar system exists, then the

number of failure modes and probability of occurrence assump-

tions can be generated based upon this data with the fix effec-

tiveness factors coming from SME input.

• If detailed data from a previous, similar system does not exist,

then the number of failure modes assumption can be rapidly esti-

mated using the PCM approach and the probability of occurrence

distribution must be assumed to represent a generic complex sys-

tem. The fix effectiveness factors can be generated using SME

input.

The final research question addressed the application of the subsystem level relia-

bility growth curves to a fault tree. Multiple different approaches were identified for

generating the overall vehicle reliability growth curve. These approaches were primar-

ily concerned with how the subsystem reliability growth curves should be incremented

in relation to the overall vehicle. These approaches were tested in Experiment 4 in

Section 3.11, which ran each approach on a set of representative vehicle architectures.

The results of this experiment showed that an anchored approach was most appro-

priate because it did not require additional data for setup and provided the greatest

accuracy. Experiment 4 therefore substantiated hypothesis 6 from Section 3.10.
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Hypothesis 6

If all subsystem growth curves are anchored at equivalent flight 0, the

resulting system level growth curve can be produced without

increasing evaluation time or encountering data availability issues

while maintaining an acceptable prediction accuracy.

After completion of the experiments and example problem an application problem

was presented in Chapter 5. It was designed to be a demonstration of the CONTRAST

method on a relevant launch vehicle design problem. The SLS heavy lift launch vehicle

was chosen as an excellent example for the application problem because it is currently

progressing through the design cycle. In addition, multiple block upgrade strategies

for the upper stage and boosters are being considered today.

Based upon the SLS vehicle architecture a matrix of alternatives was developed.

The goal of the matrix was to capture relevant vehicle architecture options for an

SLS-like vehicle as well as include novel concepts such as a winged fly-back booster.

The final matrix of alternatives is presented in Figure 39 in Section 5.1.1.

The results of the application problem were used to show the benefits of applying

the CONTRAST method for reliability assessment during conceptual design. First,

basic data exploration was demonstrated, followed by more detailed analysis. Within

the detailed analyses a primary comparison was made to one of the state-of-the-

art reliability tools, FIRST, which was discussed during the literature review. This

comparison was performed in order to illustrate one of the primary weaknesses of

the state-of-the-art tool and to show how the CONTRAST method can successfully

improve upon the area of weakness.
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The final section within the application problem results illustrated a unique capa-

bility of the CONTRAST method. The block upgrade approach for the SLS vehicle

was investigated further in this section using the reliability growth output. Multiple

upper stage and booster upgrade options were included, which allowed for the analysis

of various upgrade strategies. The application of the method allowed for the explo-

ration of trades between time required to reach maturity and overall probability of

meeting a specific reliability target. Trades between reliability and performance were

also demonstrated within this section. The block upgrade study ultimately showed

the versatility of the hybrid reliability growth approach and illustrated the additional

analyses that are enabled by this method.

6.2 Summary of Contributions

The work presented in this thesis provided multiple contributions to the field of

reliability assessment during conceptual design. These contributions relate to the

specific techniques applied within the method as well as the successful completion of

the research objective itself.

The first contribution is related to the application and associated assumptions of

reliability growth models at the subsystem level. In Section 3.5 the discussion of re-

search question 3 identified the weaknesses in applying growth models at the system

level. Within this discussion it was concluded that the weaknesses could be allevi-

ated by applying the growth model at a lower level of characterization. However,

the change in level of application also required an appropriate approach for model

assumption generation. During the discussion of research question 5 approaches for

developing these assumptions were explored. Ultimately two approaches were demon-

strated during the example problem, which served as a validation exercise of the

CONTRAST method. The example problem showed the validity of utilizing a parts

count approach in the absence of detailed data in order to generate an accurate
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reliability growth projection. It also illustrated the connection between the parts

count based assumptions and actual incremental upgrades that may occur through-

out the life-cycle. The results from the experiments and example problem provided

the groundwork for a simple, traceable, flexible, and accurate approach for generating

reliability projections during early design.

The second contribution of this research is the demonstrated application of re-

liability growth projections to a system level fault tree. During the discussion of

research question 3, a primary weakness in applying reliability growth models was

identified. This weakness resulted in the inability to capture basic changes in ve-

hicle architecture, which was one of the desired characteristics of the new method.

The contribution in this area relates to the improvement of the capture of vehicle

architecture effects when using reliability growth projections. Development of the

model assumptions at the subsystem level versus the system level was demonstrated

during the example problem. By implementing a hybrid fault tree and growth model

approach one of the primary weaknesses of the growth models has been alleviated.

Therefore, this approach successfully enables the comparison of “unique but similar”

vehicles during conceptual design.

The final contribution of this research is the hybrid reliability growth approach

itself. The primary objective of this research was to produce a method that is capable

of providing the analyst with more knowledge about the expected vehicle reliability

and safety during conceptual design. During the development of the primary objec-

tive, three requirements were derived that would signify the successful completion of

the research objective. These requirements can be considered as a sort of “wish list”

for the new reliability approach and represent areas of improvement beyond currently

available techniques.

First, the method developed within this thesis provides a very flexible approach for

assessing reliability and safety during early design. Using a matrix of alternatives to

295



www.manaraa.com

automatically generate vehicle level fault trees allows the analyst to assess a very wide

range of vehicle concepts in a very short period of time. As long as the appropriate

reliability growth assumptions are generated and stored within the matrix, heritage

and completely new vehicle concepts can be evaluated within the same architecture

space. The use of a matrix of alternatives based storage approach for the reliability

assumptions also provides a high level of re-usability. Assumptions from previous

studies can be simply ported over to a new matrix of alternatives.

Second, the resulting reliability method provides a much needed link between the

conceptual design team and the reliability analysis team. Typically, these teams carry

out their tasks with little to no interaction during the early phases of design. In some

cases, reliability analysis is not even considered as essential for conceptual design

studies. With the method developed in this thesis the resulting reliability analyses

from the reliability team can now be incorporated into the performance analyses

performed by the design team. As shown in the application problem, the results from

this method are well suited for visualizing trades between performance and reliability,

which can help the design team in concept down selection.

Due to the fact that the method can operate with very simple or very detailed

reliability assumptions, the link between the reliability group and design group does

not need to be prohibitive. During an actual study the heritage subsystems within

the matrix of alternatives will most likely benefit from the availability of detailed

reliability information. However, this detailed information and knowledge does not

lie within the design team, but with the reliability team. Therefore a database type

approach can be taken when developing the reliability growth assumptions for various

subsystems.

For example, vast amounts of test data and reliability analyses were generated for

the SSME as it proceeded from initial development through operations. At each point

in this process, the reliability team can use the knowledge gained to generate very
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accurate reliability growth assumptions for an SSME-like liquid rocket engine. With

the assumptions now stored, the design team can query the information during a

future design study that may consider the SSME as an engine option for a core stage.

Using this approach would help reduce the amount of information that the design

team needs to request from the reliability analysts. Thus, the only information that

the design team would need to request is in regard to novel concepts that have not

been explored in previous studies. The hybrid reliability growth method has therefore

provided an approach that allows the experts in both the reliability and performance

analysis fields to coalesce their respective results into one coherent package.

Finally, the method developed within this thesis provides a flexible, traceable,

and accurate approach for assessing vehicle architecture effects on reliability prior

to baseline selection. As discussed throughout the introduction to this research,

the selection of a baseline vehicle can have very large consequences on the eventual

reliability. It is therefore imperative that the effects of various architecture options

be quantified and utilized during the concept selection phase of the design. A few

existing tools were identified that can support this task, however, weaknesses were

identified in each. Based upon these weaknesses a method was desired that would

produce quantitative reliability predictions with the flexibility to incorporate novel

concepts. In addition the method needed to perform rapid analyses of the vehicles in

order to support the exploration of very large architecture spaces. Unlike the existing

techniques, the hybrid method resulting from this thesis has been shown to possess

all of these desired characteristics. The resulting method can therefore facilitate more

informed decision making during early conceptual design by incorporating reliability

and safety as a figure of merit for vehicle down selection.
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6.3 Recommendations for Further Research

While conducting research as a part of this thesis multiple different avenues for addi-

tional research have been identified. These avenues pertain to specific areas within the

CONTRAST method as well as the exploration of alternative concepts for use of the

method. First, the method developed within this thesis would benefit from additional

research into the generation of the distributions for probability of occurrence.

The probability of occurrence distributions are used for each of the subsystems

within the matrix of alternatives of the CONTRAST method. They can be derived

using generic complex system assumptions or from reliability data for the system

itself. However, in the case of heritage hardware a common pitfall can be encountered.

Typically heritage hardware is considered to be more reliable due to the fact that it

has been flown successfully before. Therefore a common misconception is that if the

heritage hardware is slapped on a new vehicle, the vehicle will automatically become

more reliable. The problem becomes more apparent after returning to the definition

for reliability, which states “for a given period of time under specified conditions”.

The key words here are “specified conditions”. Although the heritage hardware may

have demonstrated a 100% success rate in the past, the conditions the hardware may

see on a new vehicle will be different. Therefore, the reliability of the equipment may

actually decrease when it is implemented on a new vehicle!

With this in mind, further research into the effects of utilizing heritage hardware in

a new environment will benefit the CONTRAST method. An approach for adjusting

the reliability growth assumptions can potentially be developed and included in the

current method. This approach would allow for the adjustment of not only the number

of failure modes but also the probability of occurrence assumptions within the growth

models.

Another area for further research would be to link this analysis to cost and schedule

estimates for the vehicle concepts. Cost and schedule are two additional parameters
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that are very important to the eventual success of a launch vehicle program. The

reliability growth models used within the CONTRAST method are very well suited

for cost and schedule analysis as well. During the example and application problems in

this thesis a generic equivalent flight metric was used to measure time. The number of

flights required by each vehicle to reach a specific reliability requirement or maturity

will have a very large effect on the number of required tests, sets of hardware, and

time in terms of weeks or months.

For example, consider the case in which a vehicle is expected to reach a speci-

fied reliability requirement in 50 equivalent flights. These equivalent flights may be

accomplished via full scale testing, however, unsuccessful tests can cause schedule

delays. In the event that a test has failed, post-test reporting and design correction

are required, which can stretch the test schedule. If no failures are encountered the

50 equivalent flights worth of testing may take on the order of weeks. However, if

multiple failures are encountered the total test time may require months to years.

The CONTRAST method would therefore benefit from a translation between the

equivalent flight scale and actual time (i.e. months, years). This translation would

help calculate the expected time to completion of the equivalent flights and identify

concepts that are high risk in terms of development time and cost.

A final area for potential research is to study the implementation of more complex

fault trees or the augmentation of the current trees using analyses such as stochastic

Petri nets. As noted in the review of Petri nets in Section 3.2.1.9, SPN is particularly

well suited for analyzing situations in which the failure rate changes in time. This

situation typically arises in launch vehicles that possess an engine out capability. If a

single benign engine failure occurs, the probability of failure for the other engines will

likely increase because they will either throttle up or operate for a longer period of

time. Thus, for the analysis of engine out capability it may be possible to introduce

simple SPN analysis within the current FTA framework. Instead of implementing the
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engine out FTA equations as done in this thesis an SPN could be queried, which would

generate a more accurate probability of failure for the remaining engines. However,

this approach would require appropriate connections between the reliability growth

models and the SPN in order to ensure that the correct initial probabilities of failure

were being utilized.
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APPENDIX A

CLASS STRUCTURES FOR GENERATION OF FTA AND

RBD EQUATIONS

class MOArow:

def i n i t ( s e l f , name , n opt , opts , r type , r l tn , dep , lnks , r num ) :

s e l f . name = name

s e l f .num = n opt

s e l f . o p t i o n s l i s t = opts

s e l f . row type = r type

s e l f . r e l a t i o n s h i p = r l t n

s e l f . dependency = dep

s e l f . l i n k = lnks

s e l f . rnum = r num

def s e l e c t i o n ( s e l f , i ) :

return s e l f . o p t i o n s l i s t [ i ]

class Component :

def i n i t ( s e l f , name , r e l , cc f , num pts , num steps , f i r s t F l i g h t ) :

s e l f . name = name

s e l f . r e l = r e l

s e l f . c c f = c c f

s e l f . curStep = 0

s e l f . MeanRel = 0

s e l f . f i r s t S t e p = f i r s t F l i g h t

s e l f . fmList = [ ]
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s e l f . parmList = [ ]

s e l f . r e lArray = np . z e r o s ( ( num pts , num steps ) )

s e l f . r e l L i s t = [ ]

def MeanRelCalc ( s e l f , s t ep ) :

s e l f . MeanRel = np .mean( s e l f . r e lArray [ : , s t ep ] )

def Hal lRe l i ab i l i t yGrowth ( s e l f , n s teps , n pts , n f l t s ) :

s e l f . r e lArray = HallGrowth ( n f l t s , n s teps , n pts , s e l f . fmList )

def Re l i a b i l i t yCa l c ( s e l f , step , n reps ) :

parms = s e l f . parmList [ s t ep ]

a=parms [ 0 ]

b=parms [ 1 ]

s e l f . r e l L i s t = s s . beta . rvs ( a , b , l o c =0, s c a l e =1, s i z e=n reps )

def RelUpdate ( s e l f , nrep , nstep ) :

s e l f . r e l = s e l f . r e lArray [ nrep , nstep ]

def fmListClear ( s e l f ) :

#Clears the fmList f o r the g iven component

s e l f . fmList = [ ]

def fmListAppend ( s e l f , fmObj ) :

#Appends a new entry in t o the f a i l u r e mode l i s t

n = fmObj . nmodes

name = fmObj . name

comp name = fmObj . component

number = 1

302



www.manaraa.com

alpha = fmObj . alpha

beta = fmObj . beta

f e f 1 = fmObj . f e f 1

f e f 2 = fmObj . f e f 2

d i c={}

for i in range (0 , n ) :

new name = str (name) + str ( i )

d i c [ i ]=FailureMode (newname , comp ,num, alpha , beta , f e f 1 , f e f 2 )

s e l f . fmList . append ( d i c [ i ] )
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APPENDIX B

HALL GROWTH MODEL IMPLEMENTATION IN

PYTHON

def HallGrowth ( num f l ights , num steps , num points , fmList ) :

import numpy as np

#Set up the p r o b a b i l i t i e s o f f a i l u r e

for f in fmList :

#Set the i n i t i a l p r o b a b i l i t i e s o f f a i l u r e

f . BetaRV( num points )

#Set the i n d i c a t o r func t i on

f . Ind icatorFn ( num points , num f l i gh t s )

#Set the f i x e f f e c t i v e n e s s f a c t o r s

f . F i xE f f e c t i v en e s s ( num points )

#I n i t i a l i z e array

#Rows are each t r i a l , c o l s are s t e p s in time

f i t d a t a=np . z e ro s ( ( num points , num steps ) )

#Loop through number o f r e p e t i t i o n s

for r in range (0 , num points ) :

#I n i t i a l i z e arrays

RofT array=np . z e ro s ( ( 1 , num steps ) )

#Loop through number o f s t e p s

for n in range (0 , num steps ) :
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#Now loop through the f a i l u r e modes

RofT=1.0

#Correct the s t ep number to r e f l e c t f l i g h t number

f l p e r s t e p = num f l i gh t s /num steps

cur num = n∗ f l p e r s t e p

#Set i n d i c a t o r func t i on f o r a l l modes

for f in fmList :

f i r s t f a i l = f . IndL i s t [ r ]

i f f i r s t f a i l <= cur num :

ind=1

else :

ind=0

f e f = f . f e f L i s t [ r ]

p i = f . b e taL i s t [ r ]

i n n e r v a l = (1−(1− ind ∗ f e f )∗ p i )

RofT = RofT∗ i n n e r v a l

#RofT i s r e l f o r t h i s s t ep and rep

RofT array [ 0 , n ] = RofT

#Append the new po in t to data l i s t

f i t d a t a [ r , : ]= RofT array
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APPENDIX C

DERIVATION PROCEDURES FOR PROBABILITY OF

OCCURRENCE ASSUMPTIONS

The purpose of this appendix is to outline the procedures used to derive the probabil-

ity of occurrence assumptions for the Hall growth model. These procedures were used

throughout the experiments and example problem in Chapter 4 and the application

problem in Chapter 5. Three different approaches exist for deriving the probability of

occurrence distribution depending upon the data that is available for the subsystem

being modeled. Each approach will be outlined in the subsequent sections.

C.0.1 No Subsystem Reliability Data

The first approach is the simplest as it deals with the complete lack of data regarding

the subsystem. This case will primarily occur when considering novel concepts that

have not been developed before. To begin the first approach the subsystem level

probability of failure distribution must be assumed. This distribution takes the place

of any reliability estimates or data that would normally be available for a heritage

subsystem.

As discussed in Section 3.4.1 and 4.2, in the event that no reliability data is avail-

able, a general form of the probability of failure distribution can be assumed. Both of

the reliability growth models that were considered in Experiment 1 developed similar

probability of failure distributions for generic complex systems. This distribution,

Beta(0.22,8.75), was used during the example problem in Section 4.2. The example

problem results showed an agreement between the model results and the actual relia-

bility growth data for the STS vehicle. The generic distribution for complex systems
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was therefore deemed acceptable for use in the absence of actual data. Thus, the first

step of this approach is to assume the subsystem probability of failure is distributed

as Beta(0.22,8.75).

From the subsystem probability of failure the probability of occurrence distri-

bution for the failure modes can be estimated. First, the number of failure modes

assumption is needed for the subsystem being considered. With the number of modes,

N, known the probability of failure of the subsystem can be written:

PSubsystemFailure = PMode1 + PMode2 + ...+ PModeN (30)

In this equation, PSubsystemFailure is distributed as Beta(0.22,8.75) and the failure

mode probabilities PMode1, ..., PModeN are drawn from the probability of occurrence

distribution, Beta(α, β). A simple optimization algorithm can then be used to de-

termine the alpha and beta parameters for the probability of occurrence distribution

such that the resulting sum approximates the probability of subsystem failure distri-

bution. In this case the optimization is carried out until the distribution resulting

from the summation of the probabilities of occurrence matches the mean, standard

deviation, minimum, and maximum values of the subsystem failure distribution.

C.0.2 Single Point Reliability Estimate

The second approach involves the case where a reliability estimate is available for the

subsystem under consideration. In this case the reliability estimate is in the form

of a single point such as 0.987 or 0.99. Reliability data such as this are relatively

easy to obtain because they can be directly calculated using a basic flight history.

For example, the STS solid rocket booster flew on 135 total missions with only 1

catastrophic failure. The flight history suggests that the demonstrated reliability of

the booster was 0.996 or 1 failure out of 270 total boosters. This is a very crude

estimate for the expected reliability of the subsystem, however, all that is needed is

a starting point on which to anchor the reliability growth models.
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With a single point estimate for the subsystem, multiple approaches can be taken

to derive a probability of occurrence distribution for the failure modes. The point

estimate can be assumed as the mean, maximum, or minimum starting reliability for

the subsystem. For the application problem in Chapter 5 any point estimates were

assumed as the mean reliability for the subsystem. It is suggested that the value be

set to the maximum expected reliability for subsystems that will be used in a new

environment or that have not been operated for an extended period of time. For

example, one of the liquid booster engine options in the application problem was an

F-1 derived gas generator. If point estimate of the F-1 reliability were to be used as

a surrogate for the new gas generator engine, setting this estimate to the maximum

reliability for the new engine is most appropriate. This is due to the fact that the

F-1 engine has not been operated since the early 1970’s. The operating environment

of the new gas generator will also be completely different than the F-1 engine on the

Saturn V.

After determining the mean value for the subsystem reliability the variance can

either be set based upon expert judgment or a confidence bound can be calculated

using the flight history. For the example and application problems the variance was

set based upon the reliability estimate and demonstrated reliability of the subsystem.

For example, the RS-68 engine had a predicted reliability from [175] of 0.9987, but

throughout its flight history on the Delta-IV vehicle no major failures have occurred.

In this case the variance was set based on the difference between these two values.

Ultimately, a larger variance value is desired in order to represent the rather large

amount of uncertainty associated with the point estimates.

Alternatively, the variance value can be estimated using procedures for developing

confidence bounds. In this case, the reliability point estimate can be considered as

a binomial parameter, p. The flight history of the subsystem is then made up of

successes and failures that are distributed as B(n, p), where n is the total number of
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trials and p is the probability of success. The variance of p can then be written as

var(p) = p(1−p)
n

[150]. An approximate confidence interval could also be produced for

p using simple equations presented in [2]. Given X successes in n trials:

ñ = n+ z2 (31)

p̃ =
1

ñ
(X +

1

2
z2) (32)

then the confidence interval for p is,

p± z
√

1

ñ
p̃(1− p̃) (33)

where (1− α) is the level of confidence and z = 1− 1
2
α.

After the mean and variance parameters for the subsystem probability of failure

have been determined, the parameters for the associated Beta distribution can be

directly calculated. First, assuming a mean of µ and variance of σ2 [98]:

µ =
α

α + β
(34)

σ2 =
αβ

(α + β2)(α + β + 1)
(35)

Using Equations 34 and 35 the distribution parameters can then be written as a

function of the mean and variance:

α =

[
1− µ
σ2
− 1

µ

]
µ2 (36)

β = α

[
1

µ
− 1

]
(37)

Following the development of the Beta parameters for the subsystem level probability

of failure distribution the procedures are exactly the same as in case 1. Using Equation

30 and a simple optimization procedure, the Beta parameters for the failure mode

probability of occurrence distribution can be approximated.
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C.0.3 Reliability Data Given with Confidence Bounds

The final approach for generating the failure mode probability of occurrence distri-

butions refers to the case where more detailed reliability data is available for the

subsystem under consideration. During the application problem this was the case for

the reliability of the RS-25 and J-2 engines. Data from reference [103] was used for

each of these engines, which gave a mean reliability value along with a 5th and 95th

percentile value.

To generate the subsystem reliability distribution from this data a simple function

was coded in Python, which solved for the Beta parameters. In the function, shown

below, the optimizer adjusts the settings for the Beta parameters in order to mini-

mize the objective function. The objective function in this case was defined as the

square of the error between the given data and the current distribution. Depending

upon the percentile metrics given by the actual data, the objective function can be

adjusted to include additional requirements. During the application problem, the

maximum value was also included in the objective function as the scale parameter

for the Beta distribution. In the code shown below, x1 and x2 refer to the reliability

values for the ith and jth percentiles, while p1 and p2 define the specific percentile

(i.e. 95th). As with case 2, following the generation of the subsystem distribution

the probability of occurrence distribution can be derived as in case 1. Equation 30

and an additional optimization are used to approximate the Beta parameters for the

failure mode probability of occurrence distribution.
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def beta parameters ( x1 , p1 , x2 , p2 ,mean ,mx) :

def square ( x ) :

return x∗x

def ob j e c t i v e (v ) :

( a , b ) = v

temp=square ( s t a t s . beta . cd f ( x1 , a , b , l o c =0, s c a l e=mx)−p1 )

temp+=square ( s t a t s . beta . cd f ( x2 , a , b , l o c =0, s c a l e=mx)−p2 )

temp+=square ( s t a t s . beta .mean(a , b , l o c =0, s c a l e=mx)−mn)

return temp

# ar b i t r a r y i n i t i a l guess o f (3 , 3) f o r parameters

xopt = opt imize . fmin ( ob j e c t i v e , (3 , 3 ) )

return ( xopt [ 0 ] , xopt [ 1 ] )

311



www.manaraa.com

APPENDIX D

SENSITIVITY TO NUMBER OF REPETITIONS

As noted in Chapter 5 the number of repetitions at each step in time is an important

consideration for both runtime and model accuracy. With too few points the vehicle

reliability distributions at each step in time will be very sparse causing difficulties

with model fitting and possible bias in the mean values. Using too many points

however, will require a much larger amount runtime, which will reduce the number of

architectures that can be analyzed. This study was setup to identify an appropriate

range for the number of repetitions setting. Ideally, the number of repetitions used

will be large enough to accurately resolve the mean reliability at each step in time

while requiring a minimal runtime.

In order to carry out the sensitivity study a representative stage was selected

from the application problem. Only one stage versus an entire vehicle was selected

in order to reduce the amount of time required to carry out the study. The RL-10C2

stage was chosen for this study because it contains 4 individual components that

require separate reliability growth curves. Recall that this stage contains 4 RL-10C2

engines, a redundant avionics system, an IVF power system, and a structures/other

subsystem. The number of steps and number of flights from the application problem

were reduced in the interest of runtime. Therefore, 250 total flights were run with 50

steps in time.

In order to test a wide range of number of repetition values while keeping the

required runtime at an acceptable level, six values were selected on a graduated scale.

Starting from the lowest point, 250, the number of repetitions was doubled until

reaching 8000. The six settings for number of repetitions therefore were: 250, 500,
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1000, 2000, 4000, and 8000. Each of these settings was run for 50 trials in order

to produce ranges on the mean reliability values at each step in time. Obviously a

setting for number of repetitions is sought that will have a very minimal range of

mean values while keeping runtime at an acceptable level.

First, the runtime required for each setting can be seen in Figure 75. This figure

shows an exponential type trend, however, note that the number of repetition settings

were not generated on a linear scale. The figure illustrates about a 2 times increase

in required runtime for the growth models with a 2 times increase in number of

repetitions. The increase in model runtime is therefore expected to show a linear

trend with number of repetitions. In terms of runtime Figure 75 shows that a number

of repetitions below 2000 is preferable, which requires approximately 30 seconds to

evaluate the growth model. At 8000 repetitions, the runtime is nearly 2 minutes,

which would be extremely prohibitive when evaluating large architecture spaces.
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Figure 75: Required reliability growth model runtime for different repetition settings

Next, the distributions of the mean reliability values for each step in time and each

repetition setting can be analyzed. Figure 76 below shows box plots at two points in

time for all of the repetition settings. These plots illustrate the range in mean values
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that were produced by the 50 individual runs of the growth models for each setting.

Naturally, the range of values decreases as the number of repetitions increases.
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Figure 76: Mean reliability box plot at two flights for varying repetition settings

As seen in Figure 76 the range of mean reliability values produced by the 8000

repetitions option is approximately 1
5
th the range of the 250 repetitions option. There

is also a fairly noticeable difference between the ranges of the 250 and 500 repetitions

options. At 1000 repetitions the range in mean values is about twice the size of the

8000 repetition option. However, the absolute value of this range is only around

0.033. In comparison, the range at 8000 repetitions is around 0.015. The difference

in runtime between these options is nearly an order of magnitude.

From the results produced from the number of repetitions study a generic sugges-

tion for future studies can be offered. The goal of the study was to identify a number

of repetitions setting that would keep runtime at a reasonable level and achieve an ac-

ceptable convergence on the mean reliability values. For future studies it is suggested

that between 1000 and 2000 repetitions be used for the reliability growth models

depending upon the overall size of the architecture space.
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APPENDIX E

NUMBER OF FAILURE MODES SENSITIVITY STUDY

The final trade study will examine the effects of varying the number of failure modes

assumption within the reliability growth model. The goal of this section is to identify

changes in the reliability predictions that will occur due to errors in the number of

failure modes assumption. This will help give the analyst an idea of how accurate

the number of modes assumption must be in order to maintain an acceptable output

accuracy.

In order to test the sensitivity to the number of modes assumption a single sub-

system will be analyzed. The subsystem selected for this study was the RL-10C2

engine, which was used within the number of repetitions study in Appendix D. This

subsystem was run for 250 equivalent flights at step size of 5 flights per step. A total

of 2000 repetitions were used for the generation of the reliability distribution of the

subsystem at each step in time.

The original setting for the RL-10C2 number of failure modes was derived in

Section 5.2.1.1. This assumption was set to 10 total modes for the RL-10C2 in the

application problem. In order to test the sensitivity to this assumption, a range about

this original setting was applied. For the sensitivity study the reliability growth curve

for the RL-10C2 was generated using a number of modes between 5 and 15.

First, the differences in the mean reliability of the engine over its flight history

can be examined. Figure 77 below plots the mean reliability for each of the number

of modes settings. The curves have been colored by the number of modes with blue

representing the lowest value (5) and red for the highest (15).
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Figure 77: Mean engine reliability with varying number of failure modes

As seen in the figure a very large difference exists between the mean reliability

predictions using 5 and 15 failure modes. For the 5 failure mode case, the initial mean

value is 0.9577, while the 15 failure mode case has an initial mean value of 0.8705.

Fortunately this difference decreases as the equivalent flight number increases. At the

final flight the difference between the maximum and minimum failure mode settings

is 0.014.

The difference between the minimum and maximum settings for the number of

failure modes becomes more significant when considering the distributions throughout

the time history. Figure 78 plots the probability of meeting a specified reliability

requirement for each setting throughout the flight history. In this case the reliability

requirement was set at 0.99, thus the figure shows the probability that the engine has

a reliability of at least 0.99 at each step in time. As seen in the figure, the 5 mode

case reaches close to 80% at the final flight, while the 15 mode case is around 25%.
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Figure 78: Probability of meeting a reliability requirement with varying number of

failure modes

The large differences in the probabilities of meeting the requirement are due to

the varied distribution shapes that result from the failure mode settings. Obviously,

setting the number of failure modes to 5 will result in a much lower variability in

the output than setting the modes to 15. Thus, the ranges of the distributions for

higher mode settings are wider, which ultimately reduces the resulting probability of

meeting the requirement in Figure 78. Figure 79 shows the reliability distributions at

flight 250 for three mode settings. The far left distribution corresponds to 5 failure

modes, the center is 10 modes, and the right is 15 modes. This figure shows the large

difference in range between the 5 and 15 mode cases.
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Figure 79: Reliability distributions at flight 250 for three mode settings

The differences seen in Figure 77 and 78 between 5 and 15 modes are relatively

large, however, it is important to note that this range represents a ±50% change

from the original number of failure modes for the subsystem. If a smaller range of

failure modes is considered, the differences seen in the mean reliability values decrease

drastically. At ±2 failure modes and flight 250 for example, the difference in mean

reliability is 0.00625 and 0.00886 for the lower and higher mode values, respectively.

These values are less than 1% above or below the mean value at 10 failure modes.

The primary take-away from this study is the importance of consistent definition

of the level of characterization for the subsystems. In carrying out the CONTRAST

method it is very important to ensure that all subsystems are considered at the same

level of detail in order to avoid gross over or under estimation of the number of failure

modes assumption. This is especially true when generating the assumption with a

parts count approach. The parts count should only include the parts that reside on

the level of characterization of interest. If a part is too detailed or too abstract for

the level of interest, errors in the number of failure modes assumption may result.

Ultimately, a range of ±2− 3 modes will not be a deal breaker in terms of prediction

accuracy. However, in vehicles with many different subsystems special care should be

taken to ensure consistent assumption generation across all subsystems.
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